Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaorong Hu is active.

Publication


Featured researches published by Zhaorong Hu.


BMC Plant Biology | 2011

Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

Mingming Xin; Yu Wang; Yingyin Yao; Na Song; Zhaorong Hu; Dandan Qin; Chaojie Xie; Huiru Peng; Zhongfu Ni; Qixin Sun

BackgroundBiotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat.ResultsIn this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress.ConclusionOur results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.


BMC Genomics | 2011

Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize

Hongyan Xing; Ramesh N Pudake; Ganggang Guo; Guofang Xing; Zhaorong Hu; Yirong Zhang; Qixin Sun; Zhongfu Ni

BackgroundAuxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes) has not been characterized in detail.ResultsIn this study, 31 maize (Zea mays L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30). The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development.ConclusionsMaize ARF gene family is expanded (31 genes) as compared to Arabidopsis (23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may be involved in seed development and germination.


PLOS ONE | 2013

Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

Baojian Guo; Yanhong Chen; Guiping Zhang; Jiewen Xing; Zhaorong Hu; Wan-Jun Feng; Yingyin Yao; Huiru Peng; Jinkun Du; Yirong Zhang; Zhongfu Ni; Qixin Sun

In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.


New Phytologist | 2013

Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat (Triticum aestivum)

Zhaorong Hu; Zongfu Han; Na Song; Lingling Chai; Yingyin Yao; Huiru Peng; Zhongfu Ni; Qixin Sun

Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat, as well as in other polyploid plants. However, the mechanisms underlying this phenomenon are poorly understood. Expansin genes play important roles in the regulation of cell size, as well as organ size. We found that all three TaEXPA1 homoeologs were silenced in seedling roots. In seedling leaves, TaEXPA1-A and TaEXPA1-D were expressed, but TaEXPA1-B was silenced. Further analysis revealed that silencing of TaEXPA1-B in leaves occurred after the formation of the hexaploid. Chromatin immunoprecipitation assays revealed that the transcriptional silencing of three TaEXPA1 homoeologs in roots was correlated with an increased level of H3K9 dimethylation and decreased levels of H3K4 trimethylation and H3K9 acetylation. Reactivation of TaEXPA1-A and TaEXPA1-D expression in leaves was correlated with increased levels of H3K4 trimethylation and H3K9 acetylation, and decreased levels of H3K9 dimethylation in their promoters, respectively. Moreover, a higher level of cytosine methylation was detected in the promoter region of TaEXPA1-B, which may contribute to its silencing in leaves. We demonstrated that epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development.


New Phytologist | 2016

Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat.

Yao Han; Mingming Xin; Ke Huang; Yuyun Xu; Zhenshan Liu; Zhaorong Hu; Yingyin Yao; Huiru Peng; Zhongfu Ni; Qixin Sun

Polyploidy is a major driving force in plant evolution and speciation. Phenotypic changes often arise with the formation, natural selection and domestication of polyploid plants. However, little is known about the consequence of hybridization and polyploidization on root hair development. Here, we report that root hair length of synthetic and natural allopolyploid wheats is significantly longer than those of their diploid progenitors, whereas no difference is observed between allohexaploid and allotetraploid wheats. The expression of wheat gene TaRSL4, an orthologue of AtRSL4 controlling the root hair development in Arabidopsis, was positively correlated with the root hair length in diploid and allotetraploid wheats. Moreover, transcript abundance of TaRSL4 homoeologue from A genome (TaRSL4-A) was much higher than those of other genomes in natural allopolyploid wheat. Notably, increased root hair length by overexpression of the TaRSL4-A in wheat led to enhanced shoot fresh biomass under nutrient-poor conditions. Our observations indicate that increased root hair length in allohexaploid wheat originated in the allotetraploid progenitors and altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat.


BMC Plant Biology | 2017

Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging

Xinshan Zang; Xiaoli Geng; Fei Wang; Zhenshan Liu; Liyuan Zhang; Yue Zhao; Xuejun Tian; Zhongfu Ni; Yingyin Yao; Mingming Xin; Zhaorong Hu; Qixin Sun; Huiru Peng

BackgroundThe yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown.ResultsA novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H2O2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content.ConclusionsOur results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.


Gene | 2014

A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis

Fei Wang; Xinshan Zang; Muhammad Rezaul Kabir; Kelu Liu; Zhenshan Liu; Zhongfu Ni; Yingyin Yao; Zhaorong Hu; Qixin Sun; Huiru Peng

Wheat (Triticum aestivum L.) is one of the major grain crops, and heat stress adversely affects wheat production in many regions of the world. Previously, we found a heat-responsive gene named Lipid Transfer Protein 3 (TaLTP3) in wheat. TaLTP3 was deduced to be regulated by cold, ABA, MeJA, Auxin and oxidative stress according to cis-acting motifs in its promoter sequences. In this study, we show that TaLTP3 is responsive to prolonged water deficit, salt or ABA treatment in wheat seedlings. Also, TaLTP3 accumulation was observed after the plant suffered from heat stress both at the seedling and the grain-filling stages. TaLTP3 protein was localized in the cell membrane and cytoplasm of tobacco epidermal cells. Overexpression of TaLTP3 in yeast imparted tolerance to heat stress compared to cells expressing the vector alone. Most importantly, transgenic Arabidopsis plants engineered to overexpress TaLTP3 showed higher thermotolerance than control plants at the seedling stage. Further investigation indicated that transgenic lines decreased H₂O₂ accumulation and membrane injury under heat stress. Taken together, our results demonstrate that TaLTP3 confers heat stress tolerance possibly through reactive oxygen species (ROS) scavenging.


Euphytica | 2015

Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.)

Muhammad Rezaul Kabir; Gang Liu; Panfeng Guan; Fei Wang; Abul Awlad Khan; Zhongfu Ni; Yingyin Yao; Zhaorong Hu; Mingming Xin; Huiru Peng; Qixin Sun

Abstract A well organized root system is of great importance in plants for better anchorage and efficient nutrient use. Two wheat populations were used to map QTLs associated with root traits. A double haploid population contains 216 lines and derived from a cross between Nongda 3338 and Jingdong 6. The RIL progeny includes 217 lines which were evolved from another cross between Nongda 3331 and Zang 1817. Root morphological parameters were measured in seedling stage using hydroponic culture technique. Total root length, root surface area, root volume, number of root tips and main root length were measured for both the populations. In total, 54 QTLs for root traits were detected. Among the QTLs detected, 39 QTLs distributed on chromosomes 2A, 2B, 3A, 4B, 4D, 5A, 6A, 6D, and 7B were identified in DH population, while 15 QTLs on chromosomes 1B, 2B, 3B, 4A, 4D, 5A, 5B and 7A were identified in the RIL population. QTLs were clustered in 8 genomic regions in DH and 4 genomic regions in RIL population. Important QTL rich regions on chromosome 2A (wsnp_Ex_c19516_28480622-Xgwm614b), 3A (Excalibur_c24354_465-Kukri_rep_c102151_697 and Xwmc695-IAAV5821) and 4D (RAC875_c5827_554-wsnp_BF473052D_Ta_2_1) in DH and 3B (Xbarc115-Xwmc291), 4A (Xcwem34-Xbarc28b) and 4D (Xbarc1118-Rht2) in RIL population were found as they had pleiotropic effect for controlling root traits. Negative correlation was found between root traits and plant height in both populations. Root traits was found unaffected by Rht2 gene. Major QTLs detected on chromosome 4D for root traits might be different from the QTL detected previously for plant height.


Plant Physiology | 2015

GENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of FERRIC REDUCTASE DEFECTIVE3 Contributes to Iron Homeostasis in Arabidopsis

Jiewen Xing; Tianya Wang; Zhenshan Liu; Jianqin Xu; Yingyin Yao; Zhaorong Hu; Huiru Peng; Mingming Xin; Futong Yu; Dao-Xiu Zhou; Zhongfu Ni

A histone acetyltransferase contributes to the regulation of iron homeostasis. Iron homeostasis is essential for plant growth and development. Here, we report that a mutation in GENERAL CONTROL NONREPRESSED PROTEIN5 (GCN5) impaired iron translocation from the root to the shoot in Arabidopsis (Arabidopsis thaliana). Illumina high-throughput sequencing revealed 879 GCN5-regulated candidate genes potentially involved in iron homeostasis. Chromatin immunoprecipitation assays indicated that five genes (At3G08040, At2G01530, At2G39380, At2G47160, and At4G05200) are direct targets of GCN5 in iron homeostasis regulation. Notably, GCN5-mediated acetylation of histone 3 lysine 9 and histone 3 lysine 14 of FERRIC REDUCTASE DEFECTIVE3 (FRD3) determined the dynamic expression of FRD3. Consistent with the function of FRD3 as a citrate efflux protein, the iron retention defect in gcn5 was rescued and fertility was partly restored by overexpressing FRD3. Moreover, iron retention in gcn5 roots was significantly reduced by the exogenous application of citrate. Collectively, these data suggest that GCN5 plays a critical role in FRD3-mediated iron homeostasis. Our results provide novel insight into the chromatin-based regulation of iron homeostasis in Arabidopsis.


Plant Journal | 2015

Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis.

Zhaorong Hu; Na Song; Mei Zheng; Xinye Liu; Zhenshan Liu; Jiewen Xing; Junhua Ma; Weiwei Guo; Yingyin Yao; Huiru Peng; Mingming Xin; Dao-Xiu Zhou; Zhongfu Ni; Qixin Sun

Exposure to temperatures exceeding the normal optimum levels, or heat stress (HS), constitutes an environmental disruption for plants, resulting in severe growth and development retardation. Here we show that loss of function of the Arabidopsis histone acetyltransferase GCN5 results in serious defects in terms of thermotolerance, and considerably impairs the transcriptional activation of HS-responsive genes. Notably, expression of several key regulators such as the HS transcription factors HSFA2 and HSFA3, Multiprotein Bridging Factor 1c (MBF1c) and UV-HYPERSENSITIVE 6 (UVH6) is down-regulated in the gcn5 mutant under HS compared with the wild-type. Chromatin immunoprecipitation (ChIP) assays indicated that GCN5 protein is enriched at the promoter regions of HSFA3 and UVH6 genes, but not in HSFA2 and MBF1c, and that GCN5 facilitates H3K9 and H3K14 acetylation, which are associated with HSFA3 and UVH6 activation under HS. Moreover, constitutive expression of UVH6 in the gcn5 mutant partially restores heat tolerance. Taken together, our data indicate that GCN5 plays a key role in the preservation of thermotolerance via versatile regulation in Arabidopsis. In addition, expression of the wheat TaGCN5 gene re-establishes heat tolerance in Arabidopsis gcn5 mutant plants, suggesting that GCN5-mediated thermotolerance may be conserved between Arabidopsis and wheat.

Collaboration


Dive into the Zhaorong Hu's collaboration.

Top Co-Authors

Avatar

Zhongfu Ni

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huiru Peng

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yingyin Yao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qixin Sun

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mingming Xin

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhenshan Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiewen Xing

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinye Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fei Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuejun Tian

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge