Jiewen Xing
China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiewen Xing.
PLOS ONE | 2013
Baojian Guo; Yanhong Chen; Guiping Zhang; Jiewen Xing; Zhaorong Hu; Wan-Jun Feng; Yingyin Yao; Huiru Peng; Jinkun Du; Yirong Zhang; Zhongfu Ni; Qixin Sun
In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.
Plant Physiology | 2015
Jiewen Xing; Tianya Wang; Zhenshan Liu; Jianqin Xu; Yingyin Yao; Zhaorong Hu; Huiru Peng; Mingming Xin; Futong Yu; Dao-Xiu Zhou; Zhongfu Ni
A histone acetyltransferase contributes to the regulation of iron homeostasis. Iron homeostasis is essential for plant growth and development. Here, we report that a mutation in GENERAL CONTROL NONREPRESSED PROTEIN5 (GCN5) impaired iron translocation from the root to the shoot in Arabidopsis (Arabidopsis thaliana). Illumina high-throughput sequencing revealed 879 GCN5-regulated candidate genes potentially involved in iron homeostasis. Chromatin immunoprecipitation assays indicated that five genes (At3G08040, At2G01530, At2G39380, At2G47160, and At4G05200) are direct targets of GCN5 in iron homeostasis regulation. Notably, GCN5-mediated acetylation of histone 3 lysine 9 and histone 3 lysine 14 of FERRIC REDUCTASE DEFECTIVE3 (FRD3) determined the dynamic expression of FRD3. Consistent with the function of FRD3 as a citrate efflux protein, the iron retention defect in gcn5 was rescued and fertility was partly restored by overexpressing FRD3. Moreover, iron retention in gcn5 roots was significantly reduced by the exogenous application of citrate. Collectively, these data suggest that GCN5 plays a critical role in FRD3-mediated iron homeostasis. Our results provide novel insight into the chromatin-based regulation of iron homeostasis in Arabidopsis.
Plant Journal | 2015
Zhaorong Hu; Na Song; Mei Zheng; Xinye Liu; Zhenshan Liu; Jiewen Xing; Junhua Ma; Weiwei Guo; Yingyin Yao; Huiru Peng; Mingming Xin; Dao-Xiu Zhou; Zhongfu Ni; Qixin Sun
Exposure to temperatures exceeding the normal optimum levels, or heat stress (HS), constitutes an environmental disruption for plants, resulting in severe growth and development retardation. Here we show that loss of function of the Arabidopsis histone acetyltransferase GCN5 results in serious defects in terms of thermotolerance, and considerably impairs the transcriptional activation of HS-responsive genes. Notably, expression of several key regulators such as the HS transcription factors HSFA2 and HSFA3, Multiprotein Bridging Factor 1c (MBF1c) and UV-HYPERSENSITIVE 6 (UVH6) is down-regulated in the gcn5 mutant under HS compared with the wild-type. Chromatin immunoprecipitation (ChIP) assays indicated that GCN5 protein is enriched at the promoter regions of HSFA3 and UVH6 genes, but not in HSFA2 and MBF1c, and that GCN5 facilitates H3K9 and H3K14 acetylation, which are associated with HSFA3 and UVH6 activation under HS. Moreover, constitutive expression of UVH6 in the gcn5 mutant partially restores heat tolerance. Taken together, our data indicate that GCN5 plays a key role in the preservation of thermotolerance via versatile regulation in Arabidopsis. In addition, expression of the wheat TaGCN5 gene re-establishes heat tolerance in Arabidopsis gcn5 mutant plants, suggesting that GCN5-mediated thermotolerance may be conserved between Arabidopsis and wheat.
Plant Science | 2016
Tianya Wang; Zhipeng Sui; Xinye Liu; Yangyang Li; Hongjian Li; Jiewen Xing; Fangwei Song; Yirong Zhang; Qixin Sun; Zhongfu Ni
The alteration of gene expression in hybrids may be an important factor promoting phenotypic variation and plasticity. To provide insight into the underlying molecular basis of maize heterosis in terms of the kernel number per ear, we established DGE profiles for the immature ears of maize hybrid Zong3/87-1 and its parental lines at the floral organ differentiation stage. Among 4,337 identified differentially expressed genes, 4,021 (92%) exhibited nonadditive expression patterns in the hybrid. Notably, the maize homolog of Arabidopsis EBP1, designated ZmEBP1, displayed an overdominant expression pattern in the Zong3/87-1 hybrid. Moreover, the results of qRT-PCR revealed that the ZmEBP1 gene was upregulated in the immature ears of the reciprocal hybrids Zong3/87-1 and 87-1/Zong3 at different developmental stages. Additionally, ectopic expression of ZmEBP1 in Arabidopsis increased organ size, which was mainly attributed to an increase in cell numbers, rather than cell size. Considering all of these findings together, we speculate that upregulation of ZmEBP1 in maize hybrids may accelerate cell proliferation and promote ear development.
Biochimica et Biophysica Acta | 2016
Jiewen Xing; Qixin Sun; Zhongfu Ni
Heterosis is characterized by higher seed yields, plant biomass or other traits in heterozygotes or hybrids compared with their genetically divergent parents, which are often homozygous. Despite extensive investigation of heterosis and its wide application in crops such as maize, rice, wheat and sorghum, its molecular basis is still enigmatic. In the past century, some pioneers have proposed multigene models referring to the complementation of allelic and gene expression variation, which is likely to be an important contributor to heterosis. In addition, there are potential interactions of epigenetic variation involved in heterosis via novel mechanisms. At the level of gene expression, many recent studies have revealed that the heterosis phenomenon can be deciphered not only at the transcriptional level but also at the proteomic level. This review presents an update on the information supporting the involvement of proteomic patterns in heterosis and a possible future direction of the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
PLOS ONE | 2013
Zhaorong Hu; Na Song; Jiewen Xing; Yanhong Chen; Zongfu Han; Yingyin Yao; Huiru Peng; Zhongfu Ni; Qixin Sun
Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved) functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.
PLOS ONE | 2014
Chuan Li; Cheng Wang; Lingxue Meng; Jiewen Xing; Tianya Wang; Hua Yang; Yingyin Yao; Huiru Peng; Zhaorong Hu; Qixin Sun; Zhongfu Ni
Heterosis is associated with differential gene expression between hybrids and their parental lines, and the genes involved in cell proliferation played important roles. AtARF2 is a general cell proliferation repressor in Arabidopsis. In our previous study, two homologues (ZmARF10 and ZmARF25) of AtARF2 were identified in maize, but their relationship with heterosis was not elucidated. Here, the expression patterns of ZmARF10 and ZmARF25 in seedling leaves of maize hybrids and their parental lines were analyzed. The results of qRT-PCR exhibited that ZmARF25 was down-regulated in leaf basal region of hybrids. Moreover, overexpression of ZmARF25 led to reduced organ size in Arabidopsis, which was mainly due to the decrease in cell number, not cell size. In addition, the cell proliferation related genes AtANT, AtGIF1 and AtGRF5 were down-regulated in 35S::ZmARF25 transgenic lines. Collectively, we proposed that the down-regulation of ZmARF25 in maize hybrid may accelerate cell proliferation and promote leaf development, which, in turn, contributes to the observed leaf size heterosis in maize.
Plant Journal | 2016
Tianya Wang; Jiewen Xing; Xinye Liu; Zhenshan Liu; Yingyin Yao; Zhaorong Hu; Huiru Peng; Mingming Xin; Dao-Xiu Zhou; Yirong Zhang; Zhongfu Ni
Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering.
Journal of Experimental Botany | 2018
Tianya Wang; Jiewen Xing; Xinye Liu; Yingyin Yao; Zhaorong Hu; Huiru Peng; Mingming Xin; Dao-Xiu Zhou; Yirong Zhang; Zhongfu Ni
The histone acetyltransferase GCN5 modulates stem cuticular wax accumulation by acetylating the key wax biosynthetic enzyme gene CER3 in Arabidopsis.
Plant Signaling & Behavior | 2015
Jiewen Xing; Tianya Wang; Zhongfu Ni
Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field.