Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaoyan Zhang is active.

Publication


Featured researches published by Zhaoyan Zhang.


Journal of the Acoustical Society of America | 2006

The influence of subglottal acoustics on laboratory models of phonation

Zhaoyan Zhang; Juergen Neubauer; David A. Berry

Many previous laboratory investigations of phonation involving physical models, excised larynges, and in vivo canine larynges have failed to fully specify the subglottal system. Many of these same studies have reported a variety of nonlinear phenomena, including bifurcations (e.g., various classes of phonation onset and offset, register changes, frequency jumps), subharmonics, and chaos, and attributed such phenomena to the biomechanical properties of the larynx. However, such nonlinear phenomena may also be indicative of strong coupling between the voice source and the subglottal tract. Consequently, in such studies, it has not been clear whether the underlying mechanisms of such nonlinear phenomena were acoustical, biomechanical, or a coupling of the acoustical and biomechanical systems. Using a physical model of vocal fold vibration, and tracheal tube lengths which have been commonly reported in the literature, it is hypothesized and subsequently shown that such nonlinear phenomena may be replicated solely on the basis of laryngeal interactions with the acoustical resonances of the subglottal system. Recommendations are given for ruling out acoustical resonances as the source of nonlinear phenomena in future laboratory studies of phonation.


Journal of the Acoustical Society of America | 2007

Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds

Jürgen Neubauer; Zhaoyan Zhang; Reza Miraghaie; David A. Berry

Current theories of voice production depend critically upon knowledge of the near field flow which emanates from the glottis. While most modern theories predict complex, three-dimensional structures in the near field flow, few investigations have attempted to quantify such structures. Using methods of flow visualization and digital particle image velocimetry, this study measured the near field flow structures immediately downstream of a self-oscillating, physical model of the vocal folds, with a vocal tract attached. A spatio-temporal analysis of the structures was performed using the method of empirical orthogonal eigenfunctions. Some of the observed flow structures included vortex generation, vortex convection, and jet flapping. The utility of such data in the future development of more accurate, low-dimensional models of voice production is discussed.


Journal of Voice | 2011

Measurement of Young's modulus of vocal folds by indentation.

Dinesh K. Chhetri; Zhaoyan Zhang; Juergen Neubauer

OBJECTIVES To assess the accuracy of the indentation method for stiffness measurements and to estimate the Youngs modulus of the vocal fold using this technique. STUDY DESIGN Basic science. METHODS Indentation tests were performed using a range of indenter diameters and indentation depths on single- and double-layer silicone rubber models with various cover-layer thicknesses with known geometry and Youngs moduli. Measurements were repeated on intact vocal folds and isolated muscle and cover-layer samples from three cadaveric human larynges. RESULTS Indentation on single-layer rubber models yielded Youngs moduli with acceptable accuracy when the indentation depth was equal to or smaller than the indenter diameter, and both were smaller than the physical dimensions of the material sample. On two-layer models, the stiffness estimation was similarly influenced by indenter diameter and indentation depth, and acceptable accuracy was reached when indentation depth was much smaller than the height of the top cover layer. Measurements on midmembranous vocal fold tissue revealed location-dependent Youngs moduli (in kPa) as follows: intact hemilarynx, 8.6 (range=5.3-13.1); isolated inferior medial surface cover, 7.5 (range=7-7.9); isolated medial surface cover, 4.8 (range=3.9-5.7); isolated superior surface cover, 2.9 (range=2.7-3.2); and isolated thyroarytenoid muscle, 2.0 (range=1.3-2.7). CONCLUSIONS Indenter diameter, indentation depth, and material thickness are important parameters in the measurement of vocal fold stiffness using the indentation technique. Measurements on human larynges showed location-dependent differences in stiffness. The stiffness of the vocal folds was also found to be higher when the vocal fold structure was still attached to the laryngeal framework compared with that when the vocal fold was separated from the framework.


Journal of the Acoustical Society of America | 2009

Characteristics of phonation onset in a two-layer vocal fold model

Zhaoyan Zhang

Characteristics of phonation onset were investigated in a two-layer body-cover continuum model of the vocal folds as a function of the biomechanical and geometric properties of the vocal folds. The analysis showed that an increase in either the body or cover stiffness generally increased the phonation threshold pressure and phonation onset frequency, although the effectiveness of varying body or cover stiffness as a pitch control mechanism varied depending on the body-cover stiffness ratio. Increasing body-cover stiffness ratio reduced the vibration amplitude of the body layer, and the vocal fold motion was gradually restricted to the medial surface, resulting in more effective flow modulation and higher sound production efficiency. The fluid-structure interaction induced synchronization of more than one group of eigenmodes so that two or more eigenmodes may be simultaneously destabilized toward phonation onset. At certain conditions, a slight change in vocal fold stiffness or geometry may cause phonation onset to occur as eigenmode synchronization due to a different pair of eigenmodes, leading to sudden changes in phonation onset frequency, vocal fold vibration pattern, and sound production efficiency. Although observed in a linear stability analysis, a similar mechanism may also play a role in register changes at finite-amplitude oscillations.


Journal of the Acoustical Society of America | 2002

Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes

Zhaoyan Zhang; Luc Mongeau; Steven H. Frankel

Voice production involves sound generation by a confined jet flow through an orifice (the glottis) with a time-varying area. Predictive models of speech production are usually based on the so-called quasi-steady approximation. The flow rate through the time-varying orifice is assumed to be the same as a sequence of steady flows through stationary orifices for wall geometries and flow boundary conditions that instantaneously match those of the dynamic, nonstationary problem. Either the flow rate or the pressure drop can then be used to calculate the radiated sound using conventional acoustic radiation models. The quasi-steady approximation allows complex unsteady flows to be modeled as steady flows, which is more cost effective. It has been verified for pulsating open jet flows. The quasi-steady approximation, however, has not yet been rigorously validated for the full range of flows encountered in voice production. To further investigate the range of validity of the quasi-steady approximation for voice production applications, a dynamic mechanical model of the larynx was designed and built. The model dimensions approximated those of human vocal folds. Airflow was supplied by a pressurized, quiet air storage facility and modulated by a driven rubber orifice. The acoustic pressure of waves radiated upstream and downstream of the orifice was measured, along with the orifice area and other time-averaged flow variables. Calculated and measured radiated acoustic pressures were compared. A good agreement was obtained over a range of operating frequencies, flow rates, and orifice shapes, confirming the validity of the quasi-steady approximation for a class of relevant pulsating jet flows.


Journal of the Acoustical Society of America | 2006

Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds

Zhaoyan Zhang; Juergen Neubauer; David A. Berry

In a single-layered, isotropic, physical model of the vocal folds, distinct phonation types were identified based on the medial surface dynamics of the vocal fold. For acoustically driven phonation, a single, in-phase, x-10 like eigenmode captured the essential dynamics, and coupled with one of the acoustic resonances of the subglottal tract. Thus, the fundamental frequency appeared to be determined primarily by a subglottal acoustic resonance. In contrast, aerodynamically driven phonation did not naturally appear in the single-layered model, but was facilitated by the introduction of a vertical constraint. For this phonation type, fundamental frequency was relatively independent of the acoustic resonances, and two eigenmodes were required to capture the essential dynamics of the vocal fold, including an out-of-phase x-11 like eigenmode and an in-phase x-10 like eigenmode, as described in earlier theoretical work. The two eigenmodes entrained to the same frequency, and were decoupled from subglottal acoustic resonances. With this independence from the acoustic resonances, vocal fold dynamics appeared to be determined primarily by near-field, fluid-structure interactions.


Journal of the Acoustical Society of America | 2007

Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation

Zhaoyan Zhang; Juergen Neubauer; David A. Berry

In an investigation of phonation onset, a linear stability analysis was performed on a two-dimensional, aeroelastic, continuum model of phonation. The model consisted of a vocal fold-shaped constriction situated in a rigid pipe coupled to a potential flow which separated at the superior edge of the vocal fold. The vocal fold constriction was modeled as a plane-strain linear elastic layer. The dominant eigenvalues and eigenmodes of the fluid-structure-interaction system were investigated as a function of glottal airflow. To investigate specific aerodynamic mechanisms of phonation onset, individual components of the glottal airflow (e.g., flow-induced stiffness, inertia, and damping) were systematically added to the driving force. The investigations suggested that flow-induced stiffness was the primary mechanism of phonation onset, involving the synchronization of two structural eigenmodes. Only under conditions of negligible structural damping and a restricted set of vocal fold geometries did flow-induced damping become the primary mechanism of phonation onset. However, for moderate to high structural damping and a more generalized set of vocal fold geometries, flow-induced stiffness remained the primary mechanism of phonation onset.


Journal of the Acoustical Society of America | 2004

Sound generation by steady flow through glottis-shaped orifices

Zhaoyan Zhang; Luc Mongeau; Steven H. Frankel; Scott L. Thomson; Jong Beom Park

Although the signature of human voice is mostly tonal, it also includes a significant broadband component. Quadrupolelike sources due to turbulence in the region downstream of the glottis, and dipolelike sources due to the force applied by the vocal folds onto the surrounding fluid are the two primary broadband sound generating mechanisms. In this study, experiments were conducted to characterize the broadband sound emissions of confined stationary jets through rubber orifices formed to imitate the approximate shape of the human glottis at different stages during one cycle of vocal fold vibrations. The radiated sound pressure spectra downstream of the orifices were measured for varying flow rates, orifice shapes, and gas mixtures. The nondimensional sound pressure spectra were decomposed into the product of three functions: a source function F, a radiation efficiency function M, and an acoustic response function G. The results show that, as for circular jets, the quadrupole source contributions dominated for straight and convergent orifices. For divergent jets, whistling tonal sounds were emitted at low flow rates. At high flow rates for the same geometry, dipole contributions dominated the sound radiated by free jets. However, possible source-load acoustic feedback may have hampered accurate source identification in confined flows.


Otolaryngology-Head and Neck Surgery | 2010

Functional testing of a tissue-engineered vocal fold cover replacement

Jennifer L. Long; Juergen Neubauer; Zhaoyan Zhang; Patricia A. Zuk; Gerald S. Berke; Dinesh K. Chhetri

Objectives: Tissue engineering may provide a treatment for severe vocal fold scars. This study quantifies mechanical properties and demonstrates vibration of a tissue-engineered vocal fold cover replacement. Methods: Tissue-engineered constructs were produced from fibrin and adipose-derived stem cells. Optimized bilayered constructs contained epithelial and mesenchymal cell phenotypes in a stratified geometry. For comparison, homogeneous constructs did not have epithelial differentiation. Elastic modulus was determined using indentation. Immunohistochemical labeling for type I collagen was performed. A bilayered construct was also tested in phonation in an excised larynx model. Results: Bilayered vocal fold cover replacements had indentation moduli similar to human vocal fold covers (mean construct modulus 6.8 kPa). Collagen deposition occurred in the middle of the construct. Homogeneous constructs had a mean modulus of 8.3 kPa, and collagen was concentrated at the surface. An excised larynx with unilateral vocal fold cover replacement phonated and exhibited mucosal waves at physiologic airflow. Conclusion: Bilayered tissue-engineered constructs were produced that exhibited indentation modulus, microstructure, and vibration similar to that exhibited by human vocal fold covers.


Journal of the Acoustical Society of America | 2006

Mechanisms of irregular vibration in a physical model of the vocal folds

David A. Berry; Zhaoyan Zhang; Juergen Neubauer

Previous investigations have shown that one mechanism of irregular vocal fold vibration may be a desynchronization of two or more vibratory modes of the vocal fold tissues. In the current investigation, mechanisms of irregular vibration were further examined using a self-oscillating, physical model of vocal fold vibration, a hemi-model methodology, and high-speed, stereoscopic, digital imaging. Using the method of empirical eigen-functions, a spatiotemporal analysis revealed mechanisms of irregular vibration in subharmonic phonation and biphonation, which were not disclosed in a standard acoustic spectrum.

Collaboration


Dive into the Zhaoyan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Berry

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge