Zhaoyuan Hou
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaoyuan Hou.
Developmental Cell | 2004
Manabu Matsuda; Tatsuhiko Imaoka; Archie J. Vomachka; Gary A. Gudelsky; Zhaoyuan Hou; Meenakshi J. Mistry; Jason P. Bailey; Kathryn M. Nieport; Diego J. Walther; Michael Bader; Nelson D. Horseman
Mammary gland development is controlled by a dynamic interplay between endocrine hormones and locally produced factors. Biogenic monoamines (serotonin, dopamine, norepinephrine, and others) are an important class of bioregulatory molecules that have not been shown to participate in mammary development. Here we show that mammary glands stimulated by prolactin (PRL) express genes essential for serotonin biosynthesis (tryptophan hydroxylase [TPH] and aromatic amine decarboxylase). TPH mRNA was elevated during pregnancy and lactation, and serotonin was detected in the mammary epithelium and in milk. TPH was induced by PRL in mammosphere cultures and by milk stasis in nursing dams, suggesting that the gene is controlled by milk filling in the alveoli. Serotonin suppressed beta-casein gene expression and caused shrinkage of mammary alveoli. Conversely, TPH1 gene disruption or antiserotonergic drugs resulted in enhanced secretory features and alveolar dilation. Thus, autocrine-paracrine serotonin signaling is an important regulator of mammary homeostasis and early involution.
Molecular and Cellular Biology | 2008
Zhaoyuan Hou; Hongzhuang Peng; Kasirajan Ayyanathan; Kai-Ping Yan; Ellen M. Langer; Gregory D. Longmore; Frank J. Rauscher
ABSTRACT The SNAIL transcription factor contains C-terminal tandem zinc finger motifs and an N-terminal SNAG repression domain. The members of the SNAIL family have recently emerged as major contributors to the processes of development and metastasis via the regulation of epithelial-mesenchymal transition events during embryonic development and tumor progression. However, the mechanisms by which SNAIL represses gene expression are largely undefined. Previously we demonstrated that the AJUBA family of LIM proteins function as corepressors for SNAIL and, as such, may serve as a platform for the assembly of chromatin-modifying factors. Here, we describe the identification of the protein arginine methyltransferase 5 (PRMT5) as an effector recruited to SNAIL through an interaction with AJUBA that functions to repress the SNAIL target gene, E-cadherin. PRMT5 binds to the non-LIM region of AJUBA and is translocated into the nucleus in a SNAIL- and AJUBA-dependent manner. The depletion of PRMT5 in p19 cells stimulates E-cadherin expression, and the SNAIL, AJUBA, and PRMT5 ternary complex can be found at the proximal promoter region of the E-cadherin gene, concomitant with increased arginine methylation of histones at the locus. Together, these data suggest that PRMT5 is an effector of SNAIL-dependent gene repression.
Oncogene | 2006
Ping La; A Desmond; Zhaoyuan Hou; Albert Silva; Robert W. Schnepp; Xianxin Hua
Menin is encoded by the tumor suppressor gene MEN1 that is mutated in patients with an inherited tumor syndrome, multiple endocrine neoplasia type 1 (MEN1). Although menin is a nuclear protein and directly binds to DNA through its nuclear localization signals (NLSs), the precise role for each of the NLSs in nuclear translocation and gene expression remains to be elucidated. Here, we show that point mutations in three individual NLSs, NLS1, NLS2, and a novel accessory NLS, NLSa, do not block nuclear translocation, but compromise the ability of menin to repress expression of the endogenous insulin-like growth factor binding protein-2 (IGFBP-2) gene. This repression is not released by an inhibitor of histone deacetylases. Although subtle mutations in menin NLSs do not affect menin association with chromatin, they abolish menin binding to the IGFBP-2 promoter in vivo. Furthermore, each of the NLSs is also crucial for menin-mediated induction of caspase 8 expression. Together, these results suggest that menin may act as a scaffold protein in coordinating activation and repression of gene transcription and that its NLSs play a more important role in controlling gene transcription than merely targeting menin into the nucleus.
Cancer Research | 2004
Robert W. Schnepp; Zhaoyuan Hou; Haoren Wang; Clark Petersen; Albert Silva; Hisao Masai; Xianxin Hua
Multiple endocrine neoplasia type I (MEN1), a hereditary tumor syndrome, is characterized by the development of tumors in multiple endocrine organs. The gene mutated in MEN1 patients, Men1, encodes a tumor suppressor, menin. Overexpression of menin leads to inhibition of Ras-transformed cells. However, it is unclear whether menin is essential for repression of cell proliferation, and if it is, how it inhibits cell proliferation. Here, we show that targeted disruption of the Men1 gene leads to enhanced cell proliferation, whereas complementation of menin-null cells with menin reduces cell proliferation. Moreover, menin interacts with activator of S-phase kinase (ASK), a component of the Cdc7/ASK kinase complex that is crucial for cell proliferation, but does not appear to alter Cdc7 kinase activity in in vitro kinase assays. We identify the COOH terminus of menin as the domain that mediates the specific interaction with ASK. Notably, wild-type menin completely represses ASK-induced cell proliferation, although it does not obviously affect the steady-state cell cycle profile of ASK-infected cells. Interestingly, disease-related COOH-terminal menin mutants that do not interact with ASK completely fail to repress ASK-induced cell proliferation. Together, these findings demonstrate a functional link between menin and ASK in the regulation of cell proliferation.
Cancer Research | 2007
Kasirajan Ayyanathan; Hongzhuang Peng; Zhaoyuan Hou; William J. Fredericks; Rakesh K. Goyal; Ellen M. Langer; Gregory D. Longmore; Frank J. Rauscher
The SNAG repression domain is comprised of a highly conserved 21-amino acid sequence, is named for its presence in the Snail/growth factor independence-1 class of zinc finger transcription factors, and is present in a variety of proto-oncogenic transcription factors and developmental regulators. The prototype SNAG domain containing oncogene, growth factor independence-1, is responsible for the development of T cell thymomas. The SNAIL proteins also encode the SNAG domain and play key roles in epithelial mesenchymal differentiation events during development and metastasis. Significantly, these oncogenic functions require a functional SNAG domain. The molecular mechanisms of SNAG domain-mediated transcriptional repression are largely unknown. Using a yeast two-hybrid strategy, we identified Ajuba, a multiple LIM domain protein that can function as a corepressor for the SNAG domain. Ajuba interacts with the SNAG domain in vitro and in vivo, colocalizes with it, and enhances SNAG-mediated transcriptional repression. Ajuba shuttles between the cytoplasm and the nucleus and may form a novel intracellular signaling system. Using an integrated reporter gene combined with chromatin immunoprecipitation, we observed rapid, SNAG-dependent assembly of a multiprotein complex that included Ajuba, SNAG, and histone modifications consistent with the repressed state. Thus, SNAG domain proteins may bind Ajuba, trapping it in the nucleus where it functions as an adapter or molecular scaffold for the assembly of macromolecular repression complexes at target promoters.
Cancer Research | 2014
Jiangzhi Chen; Hong Xu; Xiuqun Zou; Jiamin Wang; Yi Zhu; Hao Chen; Baiyong Shen; Xiaxing Deng; Aiwu Zhou; Y. Eugene Chin; Frank J. Rauscher; Chenghong Peng; Zhaoyuan Hou
Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis.
Cancer Research | 2016
Ming Z Ma; Yan Zhang; Mingzhe Weng; Shou-Hua Wang; Ye Hu; Zhaoyuan Hou; Yiyu Qin; Wei Gong; Yong-Jie Zhang; xiang x kong; Jian-Dong Wang; Zhiwei Quan
Long noncoding RNAs (lncRNA) are being implicated in the development of many cancers. Here, we report the discovery of a critical role for the lncRNA GCASPC in determining the progression of gallbladder cancer. Differentially expressed lncRNAs and mRNAs between gallbladder cancer specimens and paired adjacent nontumor tissues from five patients were identified and validated by an expression microarray analysis. Quantitative real-time PCR was used to measure GCASPC levels in tissues from 42 gallbladder cancer patients, and levels of GCASPC were confirmed further in a separate cohort of 89 gallbladder cancer patients. GCASPC was overexpressed or silenced in several gallbladder cancer cell lines where molecular and biological analyses were performed. GCASPC levels were significantly lower in gallbladder cancer than adjacent nontumor tissues and were associated with tumor size, American Joint Committee on Cancer tumor stage, and patient outcomes. GCASPC overexpression suppressed cell proliferation in vitro and in vivo, whereas GCASPC silencing had opposite effects. By RNA pull-down and mass spectrometry, we identified pyruvate carboxylase as an RNA-binding protein that associated with GCASPC. Because GCASPC is a target of miR-17-3p, we confirmed that both miR-17-3p and GCASPC downregulated pyruvate carboxylase level and activity by limiting protein stability. Taken together, our results defined a novel mechanism of lncRNA-regulated cell proliferation in gallbladder cancer, illuminating a new basis for understanding its pathogenicity. Cancer Res; 76(18); 5361-71. ©2016 AACR.
Cancer Research | 2014
Hongzhuang Peng; Mehdi Talebzadeh-Farrooji; Michael J. Osborne; Jeremy W. Prokop; Paul C. McDonald; Jayashree Karar; Zhaoyuan Hou; Mei He; Electron Kebebew; Torben F. Ørntoft; Meenhard Herlyn; Andrew J. Caton; William J. Fredericks; Bruce Malkowicz; Christopher S. Paterno; Alexandra S. Carolin; David W. Speicher; Emmanuel Skordalakes; Qihong Huang; Shoukat Dedhar; Katherine L. B. Borden; Frank J. Rauscher
Proteins that communicate signals from the cytoskeleton to the nucleus are prime targets for effectors of metastasis as they often transduce signals regulating adhesion, motility, and invasiveness. LIM domain proteins shuttle between the cytoplasm and the nucleus, and bind to partners in both compartments, often coupling changes in gene expression to extracellular cues. In this work, we characterize LIMD2, a mechanistically undefined LIM-only protein originally found to be overexpressed in metastatic lesions but absent in the matched primary tumor. LIMD2 levels in fresh and archival tumors positively correlate with cell motility, metastatic potential, and grade, including bladder, melanoma, breast, and thyroid tumors. LIMD2 directly contributes to these cellular phenotypes as shown by overexpression, knockdown, and reconstitution experiments in cell culture models. The solution structure of LIMD2 that was determined using nuclear magnetic resonance revealed a classic LIM-domain structure that was highly related to LIM1 of PINCH1, a core component of the integrin-linked kinase-parvin-pinch complex. Structural and biochemical analyses revealed that LIMD2 bound directly to the kinase domain of integrin-linked kinase (ILK) near the active site and strongly activated ILK kinase activity. Cells that were null for ILK failed to respond to the induction of invasion by LIMD2. This strongly suggests that LIMD2 potentiates its biologic effects through direct interactions with ILK, a signal transduction pathway firmly linked to cell motility and invasion. In summary, LIMD2 is a new component of the signal transduction cascade that links integrin-mediated signaling to cell motility/metastatic behavior and may be a promising target for controlling tumor spread.
Cell Death & Differentiation | 2016
Q Li; H Peng; H Fan; Xiuqun Zou; Q Liu; Y Zhang; H Xu; Y Chu; C Wang; K Ayyanathan; F J Rauscher; K Zhang; Zhaoyuan Hou
Adipocytes play a vital role in energy homeostasis and adipogenesis is a hierarchically regulated cellular differentiation process, in which the precursor mesenchymal stem cells are differentiated into mature adipocytes. Here, we report Ajuba is an important regulator of adipocyte differentiation by functioning as an obligate co-activator of PPARγ. Ajuba binds the DNA-binding domain of PPARγ via its preLIM region in a ligand-independent manner. Depletion of Ajuba in 3T3-L1 cells decreases PPARγ target gene expression and results in delayed adipogenic differentiation. Conversely, stable overexpression of Ajuba in 3T3-L1 cells increases PPARγ target gene expression and accelerates adipogenic differentiation. Mechanistic investigations demonstrate that Ajuba recruits p300/CBP via its LIM domain and facilitates p300/CBP binding to PPARγ. Moreover, Ajuba, PPARγ, p300/CBP can cooperatively occupy the PPARγ target promoters and concomitantly increases histone acetylation at these loci. Collectively, these data suggest that Ajuba is a co-activator constitutively associated with PPARγ and may be a potential therapeutic target for PPARγ-mediated metabolic disorders.
Molecular Endocrinology | 2015
Hongyan Fan; Weibing Dong; Qi Li; Xiuqun Zou; Yihong Zhang; Jiamin Wang; Shengxian Li; Wei Liu; Ying Dong; Haipeng Sun; Zhaoyuan Hou
The liver X receptors (LXRs) are important regulators of lipid, cholesterol, and glucose homeostasis by transcriptional regulation of many key genes in these processes, and the transcriptional activities of LXRs are finely controlled by cooperating with retinoid X receptors and many other coregulators. Here, we report that the LIM protein Ajuba binds to the hinge and the ligand binding domains of LXRα via its C-terminal tandem LIM motifs and enhances LXR target gene expression in liver cells. Depletion of Ajuba in HepG2 cells and in mouse primary hepatocytes decreases LXR target gene expression, whereas stable expression of Ajuba in HepG2 cells results in increased expression of these genes. Mechanistic investigations found that Ajuba selectively interacts with LXRα/retinoid X receptor-γ heterodimer to form a ternary complex, which displays a higher transactivation activity to LXR target genes. Moreover, Ajuba and LXR mutually affect their DNA binding activity at endogenous target chromatins and the cooperation between Ajuba and LXRα is dependent on the functional LXR response elements located in the target promoters. Together, our studies demonstrate that Ajuba is a novel coactivator for LXRs and may play important role in lipid and glucose metabolism.