Zheng-Lin Jiang
Nantong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zheng-Lin Jiang.
Journal of Neurotrauma | 2011
Guo-Hua Wang; Zheng-Lin Jiang; Yong-Cai Li; Xia Li; Hong Shi; Yanqin Gao; Peter S. Vosler; Jun Chen
Traumatic brain injury (TBI) is one of the leading causes of neurological disability in young adults. Edaravone, a novel synthetic small-molecule free-radical scavenger, has been shown to have a neuroprotective effect in both animal models of cerebral ischemia and stroke patients; however, the underlying mechanism is poorly understood. In this report, we investigated the potential mechanisms of edaravone treatment in a rat model of TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeneys weight-drop method. Edaravone (0.75, 1.5, or 3 mg/kg) or vehicle (normal saline) was intravenously administered at 2 and 12 h after TBI. Edaravone treatment significantly decreased hippocampal CA3 neuron loss, reduced oxidative stress, and decreased neuronal programmed cell death compared to vehicle treatment. The protective effects of edaravone treatment were also related to the pathology of TBI on non-neuronal cells, as edaravone decreased astrocyte and glial activation. Lastly, edaravone treatment significantly reduced the presence of inflammatory cytokines, cerebral edema, blood-brain barrier (BBB) permeability, and, importantly, neurological deficits following TBI. Our results suggest that edaravone exerts a neuroprotective effect in the rat model of TBI. The likely mechanism is via inhibiting oxidative stress, leading to a decreased inflammatory response and glial activation, and thereby reducing neuronal death and improving neurological function.
Journal of Neurotrauma | 2010
Guo-Hua Wang; Xiang-Gen Zhang; Zheng-Lin Jiang; Xia Li; Liang-Liang Peng; Yong-Cai Li; Yong Wang
This study was designed to evaluate the potential benefits of hyperbaric oxygen (HBO) in the treatment of traumatic brain injury (TBI). The right cerebral cortex of rats was injured by the impact of a 20-g object dropped from a predetermined height. The rats received HBO treatment at 3 ATA for 60 min after TBI. Neurological behavior score, brain water content, neuronal loss in the hippocampus, and cell apoptosis in brain tissue surrounding the primary injury site were examined to determine brain damage severity. Three and six hours after TBI, HBO-treated rats displayed a significant reduction in brain damage. However, by 12 h after TBI, the efficacy of HBO treatment was considerably attenuated. Furthermore, at 24, 48, and 72 h after TBI, the HBO treatment did not show any notable effects. In contrast, multiple HBO treatments (three or five times in all), even when started 48 h after TBI, remarkably reduced neurology deficit scores and the loss of neuronal numbers in the hippocampus. Although multiple treatments started at 48 h significantly improved neurological behaviors and reduced brain injury, the overall beneficial effects were substantially weaker than those seen after a single treatment at 6 h. These results suggest that: (1) HBO treatment could alleviate brain damage after TBI; (2) a single treatment with HBO has a time limitation of 12 h post-TBI; and (3) multiple HBO treatments have the possibility to extend the post-TBI delivery time window. Therefore, our results clearly suggest the validity of HBO therapy for the treatment of TBI.
Journal of Neuroscience Research | 2012
Lei Xia; Zheng-Lin Jiang; Guo-Hua Wang; Bao-Yin Hu; Kai-Fu Ke
The present study was designed to investigate the neuroprotective effect of ginseng total saponins (GTSs) and its underlying mechanisms in a rat model of traumatic brain injury (TBI). Rats were injected with GTSs (20 mg/kg, i.p.) or vehicle for 14 days after TBI. Neurological functions were determined using beam balance and prehensile traction tests at 1–14 days after trauma. Brain samples were extracted at 1 day after trauma for determination of water content, Nissl staining, enzyme‐linked immunosorbent assay, immunohistochemistry, terminal deoxynucleotidyl transferase‐mediated biotin‐dUTP nick end labeling, and measurement of oxidative stress variables and inflammatory cytokines. Moreover, the dose response of the neuroprotective effect and time window of the efficacy of GTSs were also determined. We found that treatment of GTSs 1) improved the neurological function with an effective dosage of 5–80 mg/kg and an efficacy time window of 3–6 hr after TBI; 2) reduced brain water content and neuronal loss in the hippocampal CA3 area; 3) increased the activity of superoxide dismutase and decreased the activity of nitric oxide synthase and the amount of malondialdehyde and nitric oxide; 4) down‐regulated interleukin‐1β, interleukin‐6, and tumor necrosis factor‐α and upregulated interleukin‐10 in the cortical area surrounding the injured core; and 5) inhibited the apoptotic cell death and expression of caspase‐3 and bax and raised the expression of bcl‐2. These findings suggest that administration of GTSs after TBI could reduce the secondary injury through inhibiting oxidative and nitrative stress, attenuating inflammatory response, and reducing apoptotic cell death.
Journal of Neuroscience Research | 2010
Guo-Hua Wang; Zheng-Lin Jiang; Zhao-Qin Chen; Xia Li; Liang-Liang Peng
To investigate the neuroprotective effect of L‐serine and its underlying mechanisms, focal cerebral ischemia was induced in rats by occlusion of middle cerebral artery (MCAO) with a suture, and reperfusion was given by filament withdrawal 2 hr later. Meanwhile, rat hippocampal neurons were primarily cultured, and incubated in serum‐free medium in an incubator containing 1% O2 for hypoxic exposure of 5 hr, or incubated in serum‐free medium containing 1 mM glutamate for glutamate exposure of 2 hr. Brain tissue injury and cell damage were then measured. L‐serine dose‐dependently decreased the neurology deficit score and infarct volume, elevated the cell viability and inhibited the leakage of lactate dehydrogenase. These effects were blocked by strychnine in both MCAO rats and cultured hippocampal neurons. Furthermore, L‐serine (168 mg·kg‐1) reduced the brain water content, permeability of blood‐brain barrier, neuronal loss and the expression of activated caspase‐3 in the cortex. In addition, L‐serine effectively protected the brain from damage when it was administered within 6 hr after the end of MCAO. It is suggested that L‐serine could exert a neuroprotective effect on the ischemic‐reperfused brain and on the hypoxia‐ or glutamate‐exposed hippocampal neurons, which may be mediated by activating glycine receptors.
Journal of Ethnopharmacology | 2014
Bao-Ying Hu; Xian-Jin Liu; Ren Qiang; Zheng-Lin Jiang; Li-Hua Xu; Guo-Hua Wang; Xia Li; Bin Peng
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng, the root of Panax ginseng C.A. Meyer, is a traditional medicinal herb that has been widely used in Asia for the treatment of many diseases through its effects of reinforcing vitality, strengthening the bodily resistance to pathogenic factors, engendering body liquids and allaying thirst, relieving uneasiness of the body and mind and benefiting intelligence, reducing body weight and prolonging life. Ginsenosides are the most important biologically active substances in ginseng. Many reports have suggested that ginsenosides could exert prominent neuroprotective and neurotrophic effects, promote neural stem/progenitor cell (NSC) proliferation and promote neurite outgrowth and neuronal network formation. The present study aimed to investigate whether treatment with ginsenosides could facilitate NSC proliferation in the hippocampal formation after traumatic brain injury (TBI) and contribute to the recovery of neurological functions including learning and memory. MATERIALS AND METHODS The modified Feeney׳s method was used to induce a TBI in rats. Ginseng total saponins (GTS) were treated intraperitoneally twice a day for 1 week after the TBI. The neurological functions, morphology of the hippocampus, expression of nerve growth-related factors and number of NSCs in the hippocampal formation ipsilateral to the trauma were determined. RESULTS We determined 1) GTS (5-80 mg/kg) treatment after a TBI improved the recovery of neurological functions, including learning and memory, and reduced cell loss in the hippocampal area. The effects of GTS at 20, 40, 60, and 80 mg/kg were better than the effects of GTS at 5 and 10 mg/kg. 2) GTS treatment (20 mg/kg) after a TBI increased the expression of NGF, GDNF and NCAM, inhibited the expression of Nogo-A, Nogo-B, TN-C, and increased the number of BrdU/nestin positive NSCs in the hippocampal formation. CONCLUSIONS GTS treatment in rats after a TBI alleviated the secondary brain injury and ameliorated the neurological functions with an effective dose limit of 5-80 mg/kg. GTS regulated the expression of nerve growth-related factors and improved the proliferation of neural stem/progenitor cells, which might facilitate neural regeneration and tissue repair, and might contribute to the recovery of neurological functions, including learning and memory. These effects of GTS might provide a foundation for the use of ginseng as a medicinal herb to enhance intelligence, reduce the aging process and prolong life in the traditional medicine.
Neuropharmacology | 2015
Pei-Pei Zhai; Li-Hua Xu; Juan-Juan Yang; Zheng-Lin Jiang; Guang-Wei Zhao; Li Sun; Guo-Hua Wang; Xia Li
This study was designed to evaluate the neuroprotective effect of l-serine and the underlying mechanisms in mice after traumatic brain injury (TBI) induced using a weight drop model. The mice were intraperitoneally injected with l-serine 3 h after TBI and then injected twice each day for 7 days or until the end of the experiment. The neurological severity score, brain water content, lesion volume, and neurone loss were determined. The levels of TNF-α, IL-1β, IL-6, and IL-10 and the number of GFAP- and Iba-1-positive cells and activated caspase-3-positive neurones in the brain tissue ipsilateral to TBI were also measured. Simultaneously, the influences of l-serine on these variables were observed. In addition, the expression of glycine receptors and l-serine-induced currents were measured. We found l-serine treatment: 1) decreased the neurological deficit score, brain water content, lesion volume, and neurone loss; 2) inhibited activated caspase-3; and 3) reduced the levels of TNF-α, IL-1β and IL-6 and the number of GFAP- and Iba-1-positive cells. The effects of l-serine were antagonised by the administration of strychnine, an antagonist of glycine receptors. In addition, we found that glycine receptors were expressed mainly in the cortical neurones but less in the astrocytes or microglial cells, and l-serine activated these receptors and induced strychnine-sensitive currents in these neurones. In conclusion, l-serine induces the activation of glycine receptors, which alleviates neuronal excitotoxicity, a secondary brain injury process, thereby reduces the activation of astrocytes and microglial cells and secretion of proinflammatory cytokines and inhibits neuronal apoptosis. Thus, l-serine treatment leads to neuroprotection of brain tissue through reducing inflammatory responses and improves recovery of the neurological functions in mice after traumatic brain injury.
PLOS ONE | 2013
Tao-Jie Ren; Ren Qiang; Zheng-Lin Jiang; Guo-Hua Wang; Li Sun; Rui Jiang; Guang-Wei Zhao; Le-Yang Han
To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF). Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1) reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2) improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3) increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca2+-activated K+ channels on the cerebral blood vessel endothelium.
The American Journal of Chinese Medicine | 2009
Liang-Liang Peng; Hong-Mei Shen; Zheng-Lin Jiang; Xia Li; Guo-Hua Wang; Yun-Feng Zhang; Kai-Fu Ke
In order to investigate the mechanisms underlying the neuroprotective effect of ginsenoside Rb3, rat hippocampal neurons were primarily cultured, and exposed to 1 mM N-methyl-D-aspartate (NMDA), cell viability and lactate dehydrogenase leakage were measured. Ca2+ influx was determined by calcium imaging with a laser confocal microscopy. The influences of ginsenoside Rb3 on these variables were examined. Patch-clamp technique was used to observe the effects of ginsenoside Rb3 on NMDA-evoked current. The results show that treatment of Rb3 raised the neuronal viability, reduced the leakage of lactate dehydrogenase, and inhibited NMDA-elicited Ca2+ influx in a dose-dependent manner. In the presence of Rb3, NMDA-evoked peak current was inhibited, and Ca2+-induced desensitization of NMDA current was facilitated. It is suggested that ginsenoside Rb3 could exert a neuroprotective role on hippocampal neurons, a role which was partly mediated by the facilitation of Ca2+-dependent deactivation of NMDA receptors, and the resultant reduction of intracellular free Ca2+ level.
PLOS ONE | 2014
Li Sun; Ren Qiang; Yao Yang; Zheng-Lin Jiang; Guo-Hua Wang; Guang-Wei Zhao; Tao-Jie Ren; Rui Jiang; Li-Hua Xu
The present study was conducted to clarify whether treatment with L-serine can improve the brain repair and neurorestoration of rats after permanent middle cerebral artery occlusion (pMCAO). After pMCAO, the neurological functions, brain lesion volume, and cortical injury were determined. GDNF, NGF, NCAM L1, tenascin-C, and Nogo-A levels were measured. Proliferation and differentiation of the neural stem cells (NSCs) and proliferation of the microvessels in the ischemic boundary zone of the cortex were evaluated. Treatment with L-serine (168 mg/kg body weight, i.p.) began 3 h after pMCAO and was repeated every 12 h for 7 days or until the end of the experiment. L-Serine treatment: 1) reduced the lesion volume and neuronal loss; 2) improved the recovery of neurological functions; 3) elevated the expression of nerve growth-related factors; and 4) facilitated the proliferation of endogenous NSCs and microvessels activated after pMCAO and increased the number of new-born neurons. 5) D-cycloserine, an inhibitor of serine hydroxymethyltransferase, blunted the effects of L-serine on NSC proliferation, differentiation, microvascular proliferation. In conclusions, L-serine treatment in pMCAO rats can reduce brain injury and facilitate neurorestoration which is partly associated with the improvement of proliferation of NSCs and microvessels, reconstruction of neurovascular units and resultant neurorepair. The effects of L-serine on endogenous NSC proliferation and microvascular proliferation are partly mediated by the action of L-serine as a substrate for the production of one-carbon groups used for purine and pyrimidine synthesis and modulation of the expression of some nerve growth-related factors.
Science China-life Sciences | 2012
Xia Li; Zhao-Qin Chen; Zheng-Lin Jiang; YeFei Li; Yun-Feng Zhang
In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glycine could inhibit NMDAR responses induced by high concentration of NMDA in hippocampal neurons. The mechanism underlying this inhibitory impact, however, has been unclear. In this study, the whole-cell patch-clamp recording and Ca2+ imaging with Fluo-3/AM under laser scanning confocal microscope were used to analyze the possible involvement of NMDAR subunits in this effect. We found that the peak current of NMDARs and Ca2+ influx induced by high concentration of NMDA were reduced by treatment of glycine (0.03–10 μmol L−1) in a dose-dependent manner, and that the glycine-dependent inhibition of NMDAR responses, which were induced at 300 μmol L−1 NMDA, was reversed by ZnCl2 through the blocking of the NR2A subunit of NMDARs, but was less influenced by ifenprodil, a NR2B inhibitor. Our results suggest that the glycine-dependent inactivation of NMDARs is potentially modulated by the regulatory subunit NR2A.