Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenggang Lan is active.

Publication


Featured researches published by Zhenggang Lan.


Journal of Physical Chemistry B | 2009

Photoinduced Nonadiabatic Dynamics of Pyrimidine Nucleobases: On-the-Fly Surface-Hopping Study with Semiempirical Methods

Zhenggang Lan; Eduardo Fabiano; Walter Thiel

The photoinduced relaxation dynamics of pyrimidine nucleobases (uracil, thymine, and cytosine) was studied using the surface-hopping approach at the semiempirical OM2/MRCI level of theory. The relevant potential energy surfaces were characterized by performing geometry optimizations of the energy minima of the lowest electronic states and of the most important conical intersections and by computing excitation energies at each configuration. Surface-hopping molecular dynamics simulations were performed to describe the nonadiabatic dynamics after excitation into the optically active state. In each of the molecules, the two lowest excited singlet states are involved in the dynamics, and there are competing relaxation paths. The dynamics is dominated by a two-step relaxation mechanism in uracil and thymine, while the direct decay to the ground state is most important in cytosine. For all three molecules, the simulations yield ultrafast S(2)-S(1) deexcitation within 50 fs and internal conversion to the ground state in less than 1 ps, consistent with recent experimental results from time-resolved photoelectron spectroscopy.


Journal of Chemical Physics | 2012

Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine

Mario Barbatti; Zhenggang Lan; Rachel Crespo-Otero; Jaroslaw J. Szymczak; Hans Lischka; Walter Thiel

In spite of the importance of nonadiabatic dynamics simulations for the understanding of ultrafast photo-induced phenomena, simulations based on different methodologies have often led to contradictory results. In this work, we proceed through a comprehensive investigation of on-the-fly surface-hopping simulations of 9H-adenine in the gas phase using different electronic structure theories (ab initio, semi-empirical, and density functional methods). Simulations that employ ab initio and semi-empirical multireference configuration interaction methods predict the experimentally observed ultrafast deactivation of 9H-adenine with similar time scales, however, through different internal conversion channels. Simulations based on time-dependent density functional theory with six different hybrid and range-corrected functionals fail to predict the ultrafast deactivation. The origin of these differences is analyzed by systematic calculations of the relevant reaction pathways, which show that these discrepancies can always be traced back to topographical features of the underlying potential energy surfaces.


Journal of the American Chemical Society | 2012

Intramolecular Hydrogen Bonding Plays a Crucial Role in the Photophysics and Photochemistry of the GFP Chromophore

Ganglong Cui; Zhenggang Lan; Walter Thiel

In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI) shows an entirely different photochemical behavior experimentally, since it mainly undergoes ultrafast intramolecular excited-state proton transfer, followed by S(1) → S(0) decay and ground-state reverse hydrogen transfer. We have chosen 4-(2-hydroxybenzylidene)-1H-imidazol-5(4H)-one (OHBI) to model the gas-phase photodynamics of such 2-hydroxy-substituted chromophores. We first use various electronic structure methods (DFT, TDDFT, CC2, DFT/MRCI, OM2/MRCI) to explore the S(0) and S(1) potential energy surfaces of OHBI and to locate the relevant minima, transition state, and minimum-energy conical intersection. These static calculations suggest the following decay mechanism: upon photoexcitation to the S(1) state, an ultrafast adiabatic charge-transfer induced excited-state intramolecular proton transfer (ESIPT) occurs that leads to the S(1) minimum-energy structure. Nearby, there is a S(1)/S(0) minimum-energy conical intersection that allows for an efficient nonadiabatic S(1) → S(0) internal conversion, which is followed by a fast ground-state reverse hydrogen transfer (GSHT). This mechanism is verified by semiempirical OM2/MRCI surface-hopping dynamics simulations, in which the successive ESIPT-GSTH processes are observed, but without cis-trans isomerization (which is a minor path experimentally with less than 5% yield). These gas-phase simulations of OHBI give an estimated first-order decay time of 476 fs for the S(1) state, which is larger but of the same order as the experimental values measured for OHBDI in solution: 270 fs in CH(3)CN and 230 fs in CH(2)Cl(2). The differences between the photoinduced processes of the 2- and 4-hydroxy-substituted chromophores are attributed to the presence or absence of intramolecular hydrogen bonding between the two rings.


Journal of Chemical Physics | 2005

Photochemistry of pyrrole: Time-dependent quantum wave-packet description of the dynamics at the π1σ*-S0 conical intersections

Valérie Vallet; Zhenggang Lan; S. Mahapatra; Andrzej L. Sobolewski; Wolfgang Domcke

The photoinduced hydrogen-elimination reaction in pyrrole via the conical intersections of the two π1σ* excited states with the electronic ground states [B11(πσ*)-S0 and A21(πσ*)-S0] have been investigated by time-dependent quantum wave-packet calculations. Model potential-energy surfaces of reduced dimensionality have been constructed on the basis of accurate multireference ab initio electronic-structure calculations. For the B11-S0 conical intersection, the model includes the NH stretching coordinate as the tuning mode and the hydrogen out-of-plane bending coordinate as the coupling mode. For the A21-S0 conical intersection, the NH stretching coordinate and the screwing coordinate of the ring hydrogens are taken into account. The latter is the dominant coupling mode of this conical intersection. The electronic population-transfer processes at the conical intersections, the branching ratio between the dissociation channels, and their dependence on the initial preparation of the system have been investiga...


ChemPhysChem | 2009

Photoinduced Nonadiabatic Dynamics of 9H‐Guanine

Zhenggang Lan; Eduardo Fabiano; Walter Thiel

Surface-hopping simulations are used to study the nonradiative relaxation of 9H-guanine. Two distinct S(1)-->S(0) (pipi*-->gs) decay channels, both of which pass through a conical intersection (CI), are found to be responsible for the experimentally observed double-decay behavior [schematic diagram: see text].The photoinduced nonadiabatic decay dynamics of 9H-guanine is investigated by surface-hopping calculations at the semiempirical OM2/MRCI level of theory. Following excitation, fast internal conversion from the pipi* (L(a)) excited state to the ground state is observed within 800 fs. Relaxation proceeds through two distinct S(1)-->S(0) pathways. The first channel goes through a conical intersection with pronounced out-of-plane displacement of the C2 atom and yields ultrafast decay with a time constant of 190 fs. The second channel evolves through a conical intersection with strong out-of-plane distortion of the amino group and leads to slower decay with a lifetime of 400 fs. These decay mechanisms and the computed decay times are consistent with the available experimental evidence and previous theoretical studies.


Journal of Chemical Theory and Computation | 2011

Surface Hopping Excited-State Dynamics Study of the Photoisomerization of a Light-Driven Fluorene Molecular Rotary Motor

Andranik Kazaryan; Zhenggang Lan; Lars V. Schäfer; Walter Thiel; Michael Filatov

We report a theoretical study of the photoisomerization step in the operating cycle of a prototypical fluorene-based molecular rotary motor (1). The potential energy surfaces of the ground electronic state (S0) and the first singlet excited state (S1) are explored by semiempirical quantum-chemical calculations using the orthogonalization-corrected OM2 Hamiltonian in combination with a multireference configuration interaction (MRCI) treatment. The OM2/MRCI results for the S0 and S1 minima of the relevant 1-P and 1-M isomers and for the corresponding S0 transition state are in good agreement with higher-level calculations, both with regard to geometries and energetics. The S1 surface is characterized at the OM2/MRCI level by locating two S0-S1 minimum-energy conical intersections and nearby points on the intersection seam and by computing energy profiles for pathways toward these MECIs. Semiclassical Tully-type trajectory surface hopping (TSH) simulations with on-the-fly OM2/MRCI calculations are carried out to study the excited-state dynamics after photoexcitation to the S1 state. Fast relaxation to the ground state is observed through the conical intersection regions, predominantly through the lowest-energy one with a strongly twisted central C═C double bond and pyramidalized central carbon atom. The excited-state lifetimes for the direct and inverse photoisomerization reactions (1.40 and 1.79 ps) and the photostationary state ratio (2.7:1) from the TSH-OM2 simulations are in good agreement with the available experimental data (ca. 1.7 ps and 3:1). Excited-state lifetimes, photostationary state ratio, and dynamical details of the TSH-OM2 simulations also agree with classical molecular dynamics simulations using a reparametrized optimized potentials for liquid simulations (OPLS) all-atom force field with ad-hoc surface hops at predefined conical intersection points. The latter approach allows for a more extensive statistical sampling.


Journal of Chemical Physics | 2005

Time-dependent quantum wave-packet description of the π1σ* photochemistry of phenol

Zhenggang Lan; Wolfgang Domcke; Valérie Vallet; Andrzej L. Sobolewski; S. Mahapatra

The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.


Angewandte Chemie | 2011

Hydrogen Bonding Regulates the Monomeric Nonradiative Decay of Adenine in DNA Strands

You Lu; Zhenggang Lan; Walter Thiel

Distinct fates: For adenine in (dA) 10, the internal conversion to the ground state is dominated by an S 0/S 1 n conical intersection with a strong out-of-plane deformation of the amino group (left). In (dA) 10s(dT) 10, this channel is suppressed by adeninenthymine hydrogen bonding (right). The excited-state lifetimes of adenine are computed to be ten times longer in DNA strands than in vacuo or in water.


ChemPhysChem | 2011

QM/MM Nonadiabatic Decay Dynamics of 9H-Adenine in Aqueous Solution

Zhenggang Lan; You Lu; Eduardo Fabiano; Walter Thiel

The photoinduced nonadiabatic decay dynamics of 9H-adenine (hereafter, adenine) in aqueous solution were investigated by surface-hopping simulations within a quantum mechanical/molecular mechanical (QM/MM) framework. The QM subsystem (adenine) was treated at the semiempirical OM2/MRCI level, whereas the MM solvent (water) was described by the TIP3P force field model. Classical molecular dynamics (MD) simulations were used to generate snapshots with different solvent configurations and geometries. For a representative number of these snapshots, the energy minima of the lowest electronic states and the most important conical intersections were located by QM/MM geometry optimization. Surface-hopping QM/MM MD simulations were performed for all selected snapshots to study the nonadiabatic dynamics after photoexcitation, including the two lowest excited singlet states, which are both populated in the initial photoexcitation due to strong vibronic coupling in the Franck-Condon region. The simulations yield ultrafast S(2)-S(1) decay within 40 fs and S(1)-S(0) internal conversion to the ground state within 410 fs, which is consistent with recent experimental results from time-resolved spectroscopy.


Journal of Chemical Physics | 2006

Geometric phase effects in the coherent control of the branching ratio of photodissociation products of phenol

Mayumi Abe; Yuichi Fujimura; Zhenggang Lan; Wolfgang Domcke

Optimal control simulation is used to examine the control mechanisms in the photodissociation of phenol within a two-dimensional, three-electronic-state model with two conical intersections. This model has two channels for H-atom elimination, which correspond to the (2)pi and (2)sigma states of the phenoxyl radical. The optimal pulse that enhances (2)sigma dissociation initially generates a wave packet on the S(1) potential-energy surface of phenol. This wave packet is bifurcated at the S(2)-S(1) conical intersection into two components with opposite phases because of the geometric phase effect. The destructive interference caused by the geometric phase effect reduces the population around the S(1)-S(0) conical intersection, which in turn suppresses nonadiabatic transitions and thus enhances dissociation to the (2)sigma limit. The optimal pulse that enhances S(0) dissociation, on the other hand, creates a wave packet on the S(2) potential-energy surface of phenol via an intensity borrowing mechanism, thus avoiding geometric phase effects at the S(2)-S(1) conical intersection. This wave packet hits the S(1)-S(0) conical intersection directly, resulting in preferred dissociation to the (2)pi limit. The optimal pulse that initially prepares the wave packet on the S(1) potential-energy surface (PES) has a higher carrier frequency than the pulse that prepares the wave packet on the S(2) PES. This counterintuitive effect is explained by the energy-level structure and the S(2)-S(1) vibronic coupling mechanism.

Collaboration


Dive into the Zhenggang Lan's collaboration.

Top Co-Authors

Avatar

Yu Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deping Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Likai Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Wan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Mahapatra

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar

Xiao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jie Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge