Zhenghang Zhao
University of North Texas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhenghang Zhao.
Nature Nanotechnology | 2015
Jintao Zhang; Zhenghang Zhao; Zhenhai Xia; Liming Dai
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out with noble metals (such as Pt) and metal oxides (such as RuO₂ and MnO₂) as catalysts, respectively. However, these metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects. Here, we describe a mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area of ∼1,663 m(2) g(-1) and good electrocatalytic properties for both ORR and OER. This material was fabricated using a scalable, one-step process involving the pyrolysis of a polyaniline aerogel synthesized in the presence of phytic acid. We then tested the suitability of this N,P-doped carbon foam as an air electrode for primary and rechargeable Zn-air batteries. Primary batteries demonstrated an open-circuit potential of 1.48 V, a specific capacity of 735 mAh gZn(-1) (corresponding to an energy density of 835 Wh kgZn(-1)), a peak power density of 55 mW cm(-2), and stable operation for 240 h after mechanical recharging. Two-electrode rechargeable batteries could be cycled stably for 180 cycles at 2 mA cm(-2). We also examine the activity of our carbon foam for both OER and ORR independently, in a three-electrode configuration, and discuss ways in which the Zn-air battery can be further improved. Finally, our density functional theory calculations reveal that the N,P co-doping and graphene edge effects are essential for the bifunctional electrocatalytic activity of our material.
Advanced Materials | 2015
Zhenghang Zhao; Mingtao Li; Lipeng Zhang; Liming Dai; Zhenhai Xia
Oxygen reduction reaction/oxygen evolution reaction (ORR/OER) catalytic activities of p-orbital heteroatom-doped carbon nanomaterials are demonstrated to correlate to the combination of the electron affinity and electronegativity of doping elements, which serves as an activity descriptor for the entire family of p-block element dopants. Such a descriptor has predictive power and enables effective design of new bifunctional catalysts with enhanced ORR/OER activities.
Advanced Materials | 2017
Zhijuan Liu; Zhenghang Zhao; Yanyong Wang; Shuo Dou; Dafeng Yan; Dongdong Liu; Zhenhai Xia; Shuangyin Wang
Metal-free electrocatalysts have been extensively developed to replace noble metal Pt and RuO2 catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in fuel cells or metal-air batteries. These electrocatalysts are usually deposited on a 3D conductive support (e.g., carbon paper or carbon cloth (CC)) to facilitate mass and electron transport. For practical applications, it is desirable to create in situ catalysts on the carbon fiber support to simplify the fabrication process for catalytic electrodes. In this study, the first example of in situ exfoliated, edge-rich, oxygen-functionalized graphene on the surface of carbon fibers using Ar plasma treatment is successfully prepared. Compared to pristine CC, the plasma-etched carbon cloth (P-CC) has a higher specific surface area and an increased number of active sites for OER and ORR. P-CC also displays good intrinsic electron conductivity and excellent mass transport. Theoretical studies show that P-CC has a low overpotential that is comparable to Pt-based catalysts, as a result of both defects and oxygen doping. This study provides a simple and effective approach for producing highly active in situ catalysts on a carbon support for OER and ORR.
Advanced Materials | 2017
Chun-Yu Lin; Lipeng Zhang; Zhenghang Zhao; Zhenhai Xia
Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2 O2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Advanced Materials | 2018
Chun-Yu Lin; Detao Zhang; Zhenghang Zhao; Zhenhai Xia
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts.
ACS Catalysis | 2016
Zhenghang Zhao; Zhenhai Xia
Journal of Physical Chemistry C | 2016
Zhenghang Zhao; Lipeng Zhang; Zhenhai Xia
Journal of Physics D | 2016
Chun-Yu Lin; Zhenghang Zhao; Jianbing Niu; Zhenhai Xia
MRS Advances | 2016
Zhenghang Zhao; Zhenhai Xia
Archive | 2018
Zhenghang Zhao; Lipeng Zhang; Chun-Yu Lin; Zhenhai Xia