Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengping Yi is active.

Publication


Featured researches published by Zhengping Yi.


Diabetes | 2010

Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes

Hyonson Hwang; Benjamin P. Bowen; Natalie Lefort; Charles R. Flynn; Elena A. De Filippis; Christine Roberts; Christopher C. Smoke; Christian Meyer; Kurt Højlund; Zhengping Yi; Lawrence J. Mandarino

OBJECTIVE Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors. RESULTS Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA (P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased). CONCLUSIONS The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance.


Molecular & Cellular Proteomics | 2008

Characterization of the Human Skeletal Muscle Proteome by One-dimensional Gel Electrophoresis and HPLC-ESI-MS/MS

Kurt Højlund; Zhengping Yi; Hyonson Hwang; Benjamin P. Bowen; Natalie Lefort; Charles R. Flynn; Paul Langlais; Susan T. Weintraub; Lawrence J. Mandarino

Changes in protein abundance in skeletal muscle are central to a large number of metabolic and other disorders, including, and perhaps most commonly, insulin resistance. Proteomics analysis of human muscle is an important approach for gaining insight into the biochemical basis for normal and pathophysiological conditions. However, to date, the number of proteins identified by this approach has been limited, with 107 different proteins being the maximum reported so far. Using a combination of one-dimensional gel electrophoresis and high performance liquid chromatography electrospray ionization tandem mass spectrometry, we identified 954 different proteins in human vastus lateralis muscle obtained from three healthy, nonobese subjects. In addition to a large number of isoforms of contractile proteins, we detected all proteins involved in the major pathways of glucose and lipid metabolism in skeletal muscle. Mitochondrial proteins accounted for 22% of all proteins identified, including 55 subunits of the respiratory complexes I-V. Moreover, a number of enzymes involved in endocrine and metabolic signaling pathways as well as calcium homeostasis were identified. These results provide the most comprehensive characterization of the human skeletal muscle proteome to date. These data hold promise for future global assessment of quantitative changes in the muscle proteome of patients affected by disorders involving skeletal muscle.


Journal of Proteome Research | 2009

In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS.

Kurt Højlund; Benjamin P. Bowen; Hyonson Hwang; Charles R. Flynn; Lohith Madireddy; Thangiah Geetha; Paul Langlais; Christian Meyer; Lawrence J. Mandarino; Zhengping Yi

Protein phosphorylation plays an essential role in signal transduction pathways that regulate substrate and energy metabolism, contractile function, and muscle mass in human skeletal muscle. Abnormal phosphorylation of signaling enzymes has been identified in insulin-resistant muscle using phosphoepitope-specific antibodies, but its role in other skeletal muscle disorders remains largely unknown. This may be in part due to insufficient knowledge of relevant targets. Here, we therefore present the first large-scale in vivo phosphoproteomic study of human skeletal muscle from 3 lean, healthy volunteers. Trypsin digestion of 3-5 mg human skeletal muscle protein was followed by phosphopeptide enrichment using SCX and TiO(2). The resulting phosphopeptides were analyzed by HPLC-ESI-MS/MS. Using this unbiased approach, we identified 306 distinct in vivo phosphorylation sites in 127 proteins, including 240 phosphoserines, 53 phosphothreonines, and 13 phosphotyrosines in at least 2 out of 3 subjects. In addition, 61 ambiguous phosphorylation sites were identified in at least 2 out of 3 subjects. The majority of phosphoproteins detected are involved in sarcomeric function, excitation-contraction coupling (the Ca(2+)-cycle), glycolysis, and glycogen metabolism. Of particular interest, we identified multiple novel phosphorylation sites on several sarcomeric Z-disk proteins known to be involved in signaling and muscle disorders. These results provide numerous new targets for the investigation of human skeletal muscle phosphoproteins in health and disease and demonstrate feasibility of phosphoproteomics research of human skeletal muscle in vivo.


Journal of Proteomics | 2009

Proteome profile of functional mitochondria from human skeletal muscle using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS.

Natalie Lefort; Zhengping Yi; Benjamin P. Bowen; Brian Glancy; Eleanna De Filippis; Rebekka Mapes; Hyonson Hwang; Charles R. Flynn; Wayne T. Willis; Anthony E. Civitarese; Kurt Højlund; Lawrence J. Mandarino

Mitochondria can be isolated from skeletal muscle in a manner that preserves tightly coupled bioenergetic function in vitro. The purpose of this study was to characterize the composition of such preparations using a proteomics approach. Mitochondria isolated from human vastus lateralis biopsies were functional as evidenced by their response to carbohydrate and fat-derived fuels. Using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS, 823 unique proteins were detected, and 487 of these were assigned to the mitochondrion, including the newly characterized SIRT5, MitoNEET and RDH13. Proteins detected included 9 of the 13 mitochondrial DNA-encoded proteins and 86 of 104 electron transport chain (ETC) and ETC-related proteins. In addition, 59 of 78 proteins of the 55S mitoribosome, several TIM and TOM proteins and cell death proteins were present. This study presents an efficient method for future qualitative assessments of proteins from functional isolated mitochondria from small samples of healthy and diseased skeletal muscle.


Diabetes | 2007

Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle.

Zhengping Yi; Paul Langlais; Elena A. De Filippis; Moulun Luo; Charles R. Flynn; Stefanie Schroeder; Susan T. Weintraub; Rebekka Mapes; Lawrence J. Mandarino

OBJECTIVE—Research has focused on insulin receptor substrate (IRS)-1 as a locus for insulin resistance. Tyrosine phosphorylation of IRS-1 initiates insulin signaling, whereas serine/threonine phosphorylation alters the ability of IRS-1 to transduce the insulin signal. Of 1,242 amino acids in IRS-1, 242 are serine/threonine. Serine/threonine phosphorylation of IRS-1 is affected by many factors, including insulin. The purpose of this study was to perform global assessment of phosphorylation of serine/threonine residues in IRS-1 in vivo in humans. RESEARCH DESIGN AND METHODS—In this study, we describe our use of capillary high-performance liquid chromotography electrospray tandem mass spectrometry to identify/quantify site-specific phosphorylation of IRS-1 in human vastus lateralis muscle obtained by needle biopsy basally and after insulin infusion in four healthy volunteers. RESULTS—Twenty-two serine/threonine phosphorylation sites were identified; 15 were quantified. Three sites had not been previously identified (Thr495, Ser527, and S1005). Insulin increased the phosphorylation of Ser312, Ser616, Ser636, Ser892, Ser1101, and Ser1223 (2.6 ± 0.4, 2.9 ± 0.8, 2.1 ± 0.3, 1.6 ± 0.1, 1.3 ± 0.1, and 1.3 ± 0.1–fold, respectively, compared with basal; P < 0.05); phosphorylation of Ser348, Thr446, Thr495, and Ser1005 decreased (0.4 ± 0.1, 0.2 ± 0.1, 0.1 ± 0.1, and 0.3 ± 0.2–fold, respectively; P < 0.05). CONCLUSIONS—These results provide an assessment of IRS-1 phosphorylation in vivo and show that insulin has profound effects on IRS-1 serine/threonine phosphorylation in healthy humans.


eLife | 2013

SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion

Xiao Wei Chen; He Wang; Kanika Bajaj; Pengcheng Zhang; Zhuo Xian Meng; Danjun Ma; Yongsheng Bai; Hui Hui Liu; Elizabeth J. Adams; Andrea C. Baines; Genggeng Yu; Maureen A. Sartor; Bin Zhang; Zhengping Yi; Jiandie Lin; Stephen G. Young; Randy Schekman; David Ginsburg

The secretory pathway of eukaryotic cells packages cargo proteins into COPII-coated vesicles for transport from the endoplasmic reticulum (ER) to the Golgi. We now report that complete genetic deficiency for the COPII component SEC24A is compatible with normal survival and development in the mouse, despite the fundamental role of SEC24 in COPII vesicle formation and cargo recruitment. However, these animals exhibit markedly reduced plasma cholesterol, with mutations in Apoe and Ldlr epistatic to Sec24a, suggesting a receptor-mediated lipoprotein clearance mechanism. Consistent with these data, hepatic LDLR levels are up-regulated in SEC24A-deficient cells as a consequence of specific dependence of PCSK9, a negative regulator of LDLR, on SEC24A for efficient exit from the ER. Our findings also identify partial overlap in cargo selectivity between SEC24A and SEC24B, suggesting a previously unappreciated heterogeneity in the recruitment of secretory proteins to the COPII vesicles that extends to soluble as well as trans-membrane cargoes. DOI: http://dx.doi.org/10.7554/eLife.00444.001


Diabetologia | 2010

Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle

Kurt Højlund; Zhengping Yi; Natalie Lefort; Paul Langlais; Benjamin P. Bowen; Klaus Levin; Henning Beck-Nielsen; Lawrence J. Mandarino

Aims/hypothesisInsulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-β) and determine protein abundance of ATPsyn-β and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals.MethodsSkeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-β using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic–hyperinsulinaemic clamps.ResultsSeven phosphorylation sites were identified on ATPsyn-β purified from human skeletal muscle. Obese individuals with and without type 2 diabetes were characterised by impaired insulin-stimulated glucose disposal rates, and showed a ∼30% higher phosphorylation of ATPsyn-β at Tyr361 and Thr213 (within the nucleotide-binding region of ATP synthase) as well as a coordinated downregulation of ATPsyn-β protein and other OxPhos components. Insulin increased Tyr361 phosphorylation of ATPsyn-β by ∼50% in lean and healthy, but not insulin-resistant, individuals.Conclusions/interpretationThese data demonstrate that ATPsyn-β is phosphorylated at multiple sites in human skeletal muscle, and suggest that abnormal site-specific phosphorylation of ATPsyn-β together with reduced content of OxPhos proteins contributes to mitochondrial dysfunction in insulin resistance. Further characterisation of phosphorylation of ATPsyn-β may offer novel targets of treatment in human diseases with mitochondrial dysfunction, such as diabetes.


Journal of Proteome Research | 2008

Global relationship between the proteome and transcriptome of human skeletal muscle

Zhengping Yi; Benjamin P. Bowen; Hyonson Hwang; Christopher P. Jenkinson; Dawn K. Coletta; Natalie Lefort; Mandeep Bajaj; Sangeeta R. Kashyap; Rachele Berria; Elena A. De Filippis; Lawrence J. Mandarino

Skeletal muscle is one of the largest tissues in the human body. Changes in mRNA and protein abundance in this tissue are central to a large number of metabolic and other disorders, including, commonly, insulin resistance. Proteomic and microarray analyses are important approaches for gaining insight into the molecular and biochemical basis for normal and pathophysiological conditions. With the use of vastus lateralis muscle obtained from two groups of healthy, nonobese subjects, we performed a detailed comparison of the muscle proteome, obtained by HPLC-ESI-MS/MS, with the muscle transcriptome, obtained using oligonucleotide microarrays. HPLC-ESI-MS/MS analysis identified 507 unique proteins as present in four out of six subjects, while 5193 distinct transcripts were called present by oligonucleotide microarrays from four out of six subjects. The majority of the proteins identified by mass spectrometry also had their corresponding transcripts detected by microarray analysis, although 73 proteins were only identified in the proteomic analysis. Reflecting the high abundance of mitochondria in skeletal muscle, 30% of proteins detected were attributed to the mitochondrion, as compared to only 9% of transcripts. On the basis of Gene Ontology annotations, proteins assigned to mitochondrial inner membrane, mitochondrial envelope, structural molecule activity, electron transport, as well as generation of precursor metabolites and energy, had more corresponding transcripts detected than would be expected by chance. On the contrary, proteins assigned to Golgi apparatus, extracellular region, lyase activity, kinase activity, and protein modification process had fewer corresponding transcripts detected than would be expected by chance. In conclusion, these results provide the first global comparison of the human skeletal muscle proteome and transcriptome to date. These data show that a combination of proteomic and transcriptic analyses will provide data that can be used to test hypotheses regarding the pathogenesis of muscle disorders as well as to generate observational data that can be used to form novel hypotheses.


Journal of Proteome Research | 2010

Characterization of the Human Adipocyte Proteome and Reproducibility of Protein Abundance by One-dimensional Gel Electrophoresis and HPLC-ESI-MS/MS

Xitao Xie; Zhengping Yi; Benjamin P. Bowen; Cassandra Wolf; Charles R. Flynn; Sandeep Sinha; Lawrence J. Mandarino; Christian Meyer

Abnormalities in adipocytes play an important role in various conditions, including the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, but little is known about alterations at the protein level. We therefore sought to (1) comprehensively characterize the human adipocyte proteome for the first time and (2) demonstrate feasibility of measuring adipocyte protein abundances by one-dimensional SDS-PAGE and high performance liquid chromatography-electron spray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). In adipocytes isolated from approximately 0.5 g of subcutaneous abdominal adipose tissue of three healthy, lean subjects, we identified a total of 1493 proteins. Triplicate analysis indicated a 22.5% coefficient of variation of protein abundances. Proteins ranged from 5.8 to 629 kDa and included a large number of proteins involved in lipid metabolism, such as fatty acid transport, fatty acid oxidation, lipid storage, lipolysis, and lipid droplet maintenance. Furthermore, we found most glycolysis enzymes and numerous proteins associated with oxidative stress, protein synthesis and degradation as well as some adipokines. 22% of all proteins were of mitochondrial origin. These results provide the first detailed characterization of the human adipocyte proteome, suggest an important role of adipocyte mitochondria, and demonstrate feasibility of this approach to examine alterations of adipocyte protein abundances in human diseases.


Diabetologia | 2011

Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signalling

R. M. Holmes; Zhengping Yi; E. De Filippis; Rachele Berria; S. Shahani; P. Sathyanarayana; V. Sherman; K. Fujiwara; C. Meyer; C. Christ-Roberts; H. Hwang; J. Finlayson; Lily Q. Dong; Lawrence J. Mandarino; Mandeep Bajaj

Aims/hypothesisThe adiponectin signalling pathway is largely unknown, but recently the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1), has been shown to interact directly with adiponectin receptor (ADIPOR)1. APPL1 is present in C2C12 myoblasts and mouse skeletal muscle, but its presence in human skeletal muscle has not been investigated.MethodsSamples from type 2 diabetic, and lean and non-diabetic obese participants were analysed by: immunoprecipitation and western blot; HPLC-electrospray ionisation (ESI)-mass spectrometry (MS) analysis; peak area analysis by MS; HPLC-ESI-MS/MS/MS analysis; and RT-PCR analysis of APPL1 mRNA.ResultsImmunoprecipitation and western blot indicated a band specific to APPL1. Tryptic digestion and HPLC-ESI-MS analysis of whole-muscle homogenate APPL1 unambiguously identified APPL1 with 56% sequence coverage. Peak area analysis by MS validated western blot results, showing APPL1 levels to be significantly increased in type 2 diabetic and obese as compared with lean participants. Targeted phosphopeptide analysis by HPLC-ESI-MS/MS/MS showed that APPL1 was phosphorylated specifically on Ser401. APPL1 mRNA expression was significantly increased in obese and type 2 diabetic participants as compared with lean participants. After bariatric surgery in morbidly obese participants with subsequent weight loss, skeletal muscle APPL1 abundance was significantly reduced (p < 0.05) in association with an increase in plasma adiponectin (p < 0.01), increased levels of ADIPOR1 (p < 0.05) and increased muscle AMP-activated protein kinase (AMPK) phosphorylation (p < 0.05).Conclusions/interpretationAPPL1 abundance is significantly higher in type 2 diabetic muscle; APPL1 is phosphorylated in vivo on Ser401. Improvements in hyperglycaemia and hypoadiponectinaemia following weight loss are associated with reduced skeletal muscle APPL1, and increased plasma adiponectin levels and muscle AMPK phosphorylation.

Collaboration


Dive into the Zhengping Yi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin P. Bowen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Danjun Ma

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Moulun Luo

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles R. Flynn

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Natalie Lefort

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge