Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengxia Dou is active.

Publication


Featured researches published by Zhengxia Dou.


Proceedings of the National Academy of Sciences of the United States of America | 2013

New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China

Weifeng Zhang; Zhengxia Dou; Pan He; Xiaotang Ju; David S. Powlson; Dave R. Chadwick; David Norse; Yuelai Lu; Ying Zhang; Liang Wu; Xinping Chen; Kenneth G. Cassman; Fusuo Zhang

Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world’s population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China’s participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China’s use of N fertilizer, we quantify the carbon footprint of China’s N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20–63%, amounting to 102–357 Tg CO2-eq annually. Such reduction would decrease China’s total GHG emissions by 2–6%, which is significant on a global scale.


Journal of Environmental Quality | 2013

An Analysis of China's Fertilizer Policies: Impacts on the Industry, Food Security, and the Environment

Yuxuan Li; Weifeng Zhang; Lin Ma; Gaoqiang Huang; O. Oenema; Fusuo Zhang; Zhengxia Dou

China has made remarkable strides in recent decades to grow enough food to feed 20% of the worlds population with only 9% of the worlds arable land. Meanwhile, the nation is experiencing exacerbated air and water pollution problems. Agricultural growth and the pollution aggravation are closely linked with policies affecting fertilizer production and use. Essentially nonexistent in 1950, Chinas fertilizer industry is now a robust conglomerate producing fertilizers in amounts that not only meet domestic demand but also contribute to international trade. The industrys growth stemmed from a series of policy progressions, featuring (i) a total control system with state ownership and central planning (1949-1984), (ii) a dual system of central planning and market adjustment (1985-1997), (iii) a market-driven system with government-mandated price caps (1998-2009), and (iv) a complete market-oriented system (since 2009). In conjunction with the policy changes were massive subsidy programs totaling more than


Soil Biology & Biochemistry | 1996

Soil nitrogen mineralization during laboratory incubation: dynamics and model fitting

Zhengxia Dou; John D. Toth; Jalal D. Jabro; R. H. Fox; D. D. Fritton

18 billion in 2010. The support policies and subsidies helped grow the industry and safeguard an adequate supply of fertilizers at affordable costs to farmers, but the artificially low-priced fertilizers also contributed to a nationwide trend of fertilizer overuse, leading to nutrient pollution. China needs innovative policies and programs to address food security and sustainability challenges. In this study, we review and analyze policies and programs related to Chinas fertilizer production and use in a 60-yr span (1950-2010) and discuss its impact on the development of the industry, food security, and pressing environmental issues. Finally, our study analyzes long-term trends in fertilizer use in China and offers some key viewpoints to stimulate debates among all stakeholders.


Nature | 2016

Closing yield gaps in China by empowering smallholder farmers

Weifeng Zhang; Guoxin Cao; Xiaolin Li; Hongyan Zhang; Chong Wang; Quanqing Liu; Xinping Chen; Zhenling Cui; Jianbo Shen; Rongfeng Jiang; Guohua Mi; Yuxin Miao; Fusuo Zhang; Zhengxia Dou

Abstract Soil nitrogen mineralization kinetics were studied for eight treatments of two soils in an aerobic long-term (30 wk) incubation experiment. Soil mineral-N (NH 4 + and NO 3 − ) in the leachates was measured every week during the first 9 wk and every 2 or 3 wk thereafter. The NH 4 + percentage of the mineral-N ranged between 85 and 99% for all treatments in the first week of incubation and remained high (> 80%) in several treatments until the end of wk 4. Starting at wk 7, NH 4 + concentrations were negligible in all treatments. The net N mineralization rate was 15–24 mg N kg −1 wk −1 during the first 4–6 wk and 2–5 mg N kg −1 wk −1 from wk 8 until the end of the incubation. Four models, (i) a one-component, first-order exponential model (the single model), (ii) a two-component, first-order exponential model (the double model), (iii) a one-component, first-order exponential model including a constant term (the special model), and (iv) a hyperbolic model, were fit to the cumulative mineral-N vs time data using a non-linear regression procedure. The goodness of fit of the four models depended on the duration of incubation. With 30 wk data, the double and special models were significantly better than the other two models; with the first 15 wk data, the four models had essentially the same goodness of fit for seven out of eight treatments. The values of the regression parameters derived from each model also depended on the incubation duration. Results from this study show that the pool size and mineralization rate parameters in the different models are merely mathematically-defined quantities obtained from the kinetic analysis of the net N mineralization and do not represent any rigorously-defined pool sizes of potentially-mineralizable N and their mineralization rate constants in the soils.


Journal of Environmental Quality | 2011

The phosphorus footprint of China's food chain: implications for food security, natural resource management, and environmental quality.

Fanghao Wang; J. T. Sims; Lin Ma; Wenqi Ma; Zhengxia Dou; F. Zhang

Sustainably feeding the world’s growing population is a challenge, and closing yield gaps (that is, differences between farmers’ yields and what are attainable for a given region) is a vital strategy to address this challenge. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape. Many factors and constraints interact to limit yields, and progress in problem-solving to bring about changes at the ground level is rare. Here we present an innovative approach for enabling smallholders to achieve yield and economic gains sustainably via the Science and Technology Backyard (STB) platform. STB involves agricultural scientists living in villages among farmers, advancing participatory innovation and technology transfer, and garnering public and private support. We identified multifaceted yield-limiting factors involving agronomic, infrastructural, and socioeconomic conditions. When these limitations and farmers’ concerns were addressed, the farmers adopted recommended management practices, thereby improving production outcomes. In one region in China, the five-year average yield increased from 67.9% of the attainable level to 97.0% among 71 leading farmers, and from 62.8% to 79.6% countywide (93,074 households); this was accompanied by resource and economic benefits.


Journal of Environmental Quality | 2013

Phosphorus in China's Intensive Vegetable Production Systems: Overfertilization, Soil Enrichment, and Environmental Implications.

Zhengjuan Yan; Pengpeng Liu; Yuhong Li; Lin Ma; A. K. Alva; Zhengxia Dou; Qing Chen; Fusuo Zhang

Efficient use of phosphorus (P) for producing food, preventing water pollution, and managing a dwindling rock P reserve are major challenges for China. We analyzed P stocks and flows in the Chinese food chain to identify where P use efficiency can be improved, where P leaks to the environment, and the research, technologies, and policies needed to improve P use. We found a high degree of inefficiency; of 6652 Gg P entering the food chain, only 1102 Gg P (18%) exit as food for humans. The greatest inefficiencies were a large build-up of soil P (3670 Gg P yr; 52% of P inputs) and high P losses to the environment from animal production (1582 Gg P yr; 60% of excreted P). Improving P use in China must focus on national-scale nutrient management strategies, better animal nutrition, and adoption of technologies and policies to reduce P discharges from the animal sector and recycle P as manures in agriculture.


Journal of Environmental Quality | 2009

Phosphorus forms in conventional and organic dairy manure identified by solution and solid state p-31 NMR spectroscopy.

Zhongqi He; C. Wayne Honeycutt; Timothy S. Griffin; Barbara J. Cade-Menun; Perry J. Pellechia; Zhengxia Dou

Chinas vegetable production has experienced a rapid growth in recent years. Total production amounted to 522.7 million Mg (1 Mg = 10 g) in 2009, which was more than nine times that in 1980 and represented >50% of the world production. Meanwhile, excessive use of animal manures and chemical fertilizers in vegetable fields has brought various production and environmental challenges, including excessive accumulation of nutrients in soils and accelerated water pollution problems. In this study, we have evaluated the current status of phosphorus (P) in Chinas intensive vegetable production systems based on data summarized from nearly 100 publications plus results from our recent experiments. Gross overfertilization occurred in greenhouse (571 kg P ha) and open-field (117 kg P ha) vegetable systems compared with P removal in harvested crops (44 and 25 kg P ha) per season. Excess P input led to soil enrichment of labile P, measured as Olsen-P, averaging 179 (greenhouses) and 100 mg P kg (open fields) in the 0- to 20-cm soil depth, and in some cases led to P leaching, as evidenced by increases in Olsen-P and CaCl-P at the 40- to 60-cm soil depth. The vast majority of vegetable soils had Olsen-P exceeding the critical level (46.0-58.0 mg P kg) for optimum vegetable yield. Innovative policies and strategies are urgently needed to implement science-based nutrient management practices to attain sustainable vegetable production while protecting natural and environmental resources.


Plant and Soil | 1994

Tillage effect on seasonal nitrogen availability in corn supplied with legume green manures

Zhengxia Dou; R. H. Fox; John D. Toth

Organic dairy production has increased rapidly in recent years. Organic dairy cows (Bos taurus) generally eat different diets than their conventional counterparts. Although these differences could impact availability, utilization, and cycling of manure nutrients, little such information is available to aid organic dairy farmers in making nutrient and manure management decisions. In this study, we comparatively characterized P in organic and conventional dairy manure using solution and solid state (31)P NMR spectroscopic techniques. Phosphorus in both types of dairy manure was extracted with water, Na acetate buffer (100 mmol L(-1), pH 5.0) plus 20 mg Na dithionite mL(-1), or 0.025 mol L(-1) NaOH with 50 mmolL(-1) EDTA. Solution NMR analysis revealed that organic dairy manure contained about 10% more inorganic phosphate than conventional dairy manure. Whereas organic dairy manure did contain slightly more phytate P, it contained 30 to 50% less monoester P than conventional dairy manure. Solid state NMR spectroscopy revealed that mono-, di-, and trivalent metal P species with different stabilities were present in the two dairy manures. Conventional dairy manure contained relatively higher contents of soluble inorganic P species and stable metal phytate species. In contrast, organic dairy manure contained more Ca and Mg species of P. These results indicate that P transformation rates and quantities should be expected to differ between organic and conventional dairy manures.


Journal of Environmental Quality | 2008

A comparison of phosphorus speciation and potential bioavailability in feed and feces of different dairy herds using 31p nuclear magnetic resonance spectroscopy.

R. W. McDowell; Zhengxia Dou; John D. Toth; Barbara J. Cade-Menun; Peter J. A. Kleinman; K. Soder; Louis S. Saporito

It has been shown that legume green manures have great potential for replacing a substantial amount of the N fertilizer required for corn (Zea mays L.) production. An experiment was conducted in central Pennsylvania (USA) to study seasonal fluctuation of nitrogen (N) availability in corn with conventional tillage (CT) and no-till (NT) following red clover (Trifolium pratense L.) and hairy vetch (Vicia villosa Roth) green manures double-cropped with winter wheat (Triticum aestivum L.). Samples of corn, weeds, and soil were taken periodically and analyzed for total N content in plant tissue and soil nitrate-N content. The sum of plant N (corn plus weed) and soil nitrate-N in the upper 45 cm profile was used as an indicator of total available N. Under CT, total available N increased rapidly upon legume incorporation and reached 80% of the maximum within 4 weeks. Under NT, total available N increased steadily after the legumes were killed with herbicides and reached a maximum within 7 to 8 weeks. Seasonal corn N accumulations with the legume N source were similar to those where corn followed fallow with 200 kg N ha−1 fertilizer with CT, but were less than those in the same fallow 200 kg N ha−1 treatment with no-till. Dry weather conditions together with weed competition reduced N availability to the no-till corn compared to the CT treatments. The seasonal fluctuations of total available N and corn N uptake suggest good synchronization between N availability from the legume green manures and N accumulation by corn plants in both tillage systems under the conditions of this study.


Soil Science | 2010

Phosphorus Distribution in Sequentially Extracted Fractions of Biosolids, Poultry Litter, and Granulated Products

Zhongqi He; Hailin Zhang; Gurpal S. Toor; Zhengxia Dou; C. Wayne Honeycutt; Brian E. Haggard; Mark S. Reiter

An experiment was conducted to examine how potential phosphorus (P) bioavailability (inferred from speciation) differs in feed and feces collected in spring from four dairy herds representing different management systems: (i) total confinement with cows fed total mixed ration (TMR), (ii) total confinement with TMR plus P mineral supplement, (iii) a hybrid of confinement with TMR and pastoral grazing, and (iv) predominantly grazing with supplemental grains. A treatment was included that air dried feces to simulate conditions after dung deposition. Wet chemical techniques and solution (31)P nuclear magnetic resonance spectroscopy ((31)P-NMR) were used to identify P concentrations and compounds present in water (a surrogate for P in overland flow), dilute acid (0.012 M HCl, an estimate of P utilization by cattle), or NaOH-EDTA (a solution that maximizes the organic P extraction) extracts of feed and feces. In general, P concentration in feces paralleled P in feed. Air drying feces decreased water-extractable P by 13 to 61% largely due to a decrease in orthophosphate, whereas NaOH-EDTA-extractable P increased by 18 to 48%. Analysis of dilute HCl was unsuccessful due to orthophosphate precipitation when pH was adjusted to 12 for (31)P-NMR. In water extracts, more P was in bioavailable diester-P forms, undetectable by colorimetry, than in NaOH-EDTA extracts. In feed, orthophosphate dominated (46-70%), but myo-IHP varied with feed (<10% in forage samples but 43% in a TMR sample). The proportion of myo-IHP decreased in feces compared with feed via mineralization but decreased less in systems with a greater proportion of available P input (e.g., orthophosphate and phospholipids). Feed and drying effect the concentrations and forms of P in feces and their potential impact on soil and water quality. Although bioavailable P in feces from pasture-based and confined systems can be similar in spring, dung-P is distributed on a lower kg P ha(-1) rate in grazing systems. The best method to mitigate P loss from feces is to decrease P in feed.

Collaboration


Dive into the Zhengxia Dou's collaboration.

Top Co-Authors

Avatar

John D. Toth

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James D. Ferguson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Fusuo Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weifeng Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

David T. Galligan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Xinping Chen

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lin Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

R. H. Fox

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Chong Wang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge