Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengzong Sun is active.

Publication


Featured researches published by Zhengzong Sun.


Nature | 2010

Growth of graphene from solid carbon sources

Zhengzong Sun; Zheng Yan; Jun Yao; Elvira Beitler; Yu Zhu; James M. Tour

Monolayer graphene was first obtained as a transferable material in 2004 and has stimulated intense activity among physicists, chemists and material scientists. Much research has been focused on developing routes for obtaining large sheets of monolayer or bilayer graphene. This has been recently achieved by chemical vapour deposition (CVD) of CH4 or C2H2 gases on copper or nickel substrates. But CVD is limited to the use of gaseous raw materials, making it difficult to apply the technology to a wider variety of potential feedstocks. Here we demonstrate that large area, high-quality graphene with controllable thickness can be grown from different solid carbon sources—such as polymer films or small molecules—deposited on a metal catalyst substrate at temperatures as low as 800 °C. Both pristine graphene and doped graphene were grown with this one-step process using the same experimental set-up.


ACS Nano | 2010

Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes

Amanda L. Higginbotham; Dmitry V. Kosynkin; Alexander Sinitskii; Zhengzong Sun; James M. Tour

An improved method is described for the production of graphene oxide nanoribbons (GONRs) via longitudinal unzipping of multiwalled carbon nanotubes. The method produces GONRs with fewer defects and/or holes on the basal plane, maintains narrow ribbons <100 nm wide, and maximizes the high aspect ratio. Changes in the reaction conditions such as acid content, time, and temperature were investigated. The new, optimized method which introduces a second, weaker acid into the system, improves the selectivity of the oxidative unzipping presumably by in situ protection of the vicinal diols formed on the basal plane of graphene during the oxidation, and thereby prevents their overoxidation and subsequent hole generation. The optimized GONRs exhibit increased electrical conductivity over those chemically reduced nanoribbons produced by previously reported procedures.


ACS Nano | 2012

Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils

Zheng Yan; Jian Lin; Zhiwei Peng; Zhengzong Sun; Yu Zhu; Lei Li; Changsheng Xiang; E. Loïc Samuel; Carter Kittrell; James M. Tour

In this research, we constructed a controlled chamber pressure CVD (CP-CVD) system to manipulate graphenes domain sizes and shapes. Using this system, we synthesized large (~4.5 mm(2)) single-crystal hexagonal monolayer graphene domains on commercial polycrystalline Cu foils (99.8% purity), indicating its potential feasibility on a large scale at low cost. The as-synthesized graphene had a mobility of positive charge carriers of ~11,000 cm(2) V(-1) s(-1) on a SiO(2)/Si substrate at room temperature, suggesting its comparable quality to that of exfoliated graphene. The growth mechanism of Cu-based graphene was explored by studying the influence of varied growth parameters on graphene domain sizes. Cu pretreatments, electrochemical polishing, and high-pressure annealing are shown to be critical for suppressing graphene nucleation site density. A pressure of 108 Torr was the optimal chamber pressure for the synthesis of large single-crystal monolayer graphene. The synthesis of one graphene seed was achieved on centimeter-sized Cu foils by optimizing the flow rate ratio of H(2)/CH(4). This work should provide clear guidelines for the large-scale synthesis of wafer-scale single-crystal graphene, which is essential for the optimized graphene device fabrication.


Nano Letters | 2009

High-Yield Organic Dispersions of Unfunctionalized Graphene

Christopher E. Hamilton; Jay R. Lomeda; Zhengzong Sun; James M. Tour; Andrew R. Barron

We report a simple, high-yield, method of producing homogeneous dispersions of unfunctionalized and nonoxidized graphene nanosheets in ortho-dichlorobenzene (ODCB). Sonication/centrifugation of various graphite materials results in stable homogeneous dispersions. ODCB dispersions of graphene avert the need for harsh oxidation chemistry and allow for chemical functionalization of graphene materials by a range of methods. Additionally, films produced from ODCB-graphene have high conductivity.


ACS Nano | 2010

Reduction of graphene oxide via bacterial respiration.

Everett C. Salas; Zhengzong Sun; Andreas Luttge; James M. Tour

Here we present that graphene oxide (GO) can act as a terminal electron acceptor for heterotrophic, metal-reducing, and environmental bacteria. The conductance and physical characteristics of bacterially converted graphene (BCG) are comparable to other forms of chemically converted graphene (CCG). Electron transfer to GO is mediated by cytochromes MtrA, MtrB, and MtrC/OmcA, while mutants lacking CymA, another cytochrome associated with extracellular electron transfer, retain the ability to reduce GO. Our results demonstrate that biodegradation of GO can occur under ambient conditions and at rapid time scales. The capacity of microbes to degrade GO, restoring it to the naturally occurring ubiquitous graphite mineral form, presents a positive prospect for its bioremediation. This capability also provides an opportunity for further investigation into the application of environmental bacteria in the area of green nanochemistries.


Nature Communications | 2012

A seamless three-dimensional carbon nanotube graphene hybrid material.

Yu Zhu; Lei Li; Chenguang Zhang; Gilberto Casillas; Zhengzong Sun; Zheng Yan; Gedeng Ruan; Zhiwei Peng; Abdul-Rahman O. Raji; Carter Kittrell; Robert H. Hauge; James M. Tour

Graphene and single-walled carbon nanotubes are carbon materials that exhibit excellent electrical conductivities and large specific surface areas. Theoretical work suggested that a covalently bonded graphene/single-walled carbon nanotube hybrid material would extend those properties to three dimensions, and be useful in energy storage and nanoelectronic technologies. Here we disclose a method to bond graphene and single-walled carbon nanotubes seamlessly during the growth stage. The hybrid material exhibits a surface area >2,000 m(2) g(-1) with ohmic contact from the vertically aligned single-walled carbon nanotubes to the graphene. Using aberration-corrected scanning transmission electron microscopy, we observed the covalent transformation of sp(2) carbon between the planar graphene and the single-walled carbon nanotubes at the atomic resolution level. These findings provide a new benchmark for understanding the three-dimensional graphene/single-walled carbon nanotube-conjoined materials.


ACS Nano | 2011

Growth of Graphene from Food, Insects, and Waste

Gedeng Ruan; Zhengzong Sun; Zhiwei Peng; James M. Tour

In its monolayer form, graphene is a one-atom-thick two-dimensional material with excellent electrical, mechanical, and thermal properties. Large-scale production of high-quality graphene is attracting an increasing amount of attention. Chemical vapor and solid deposition methods have been developed to grow graphene from organic gases or solid carbon sources. Most of the carbon sources used were purified chemicals that could be expensive for mass production. In this work, we have developed a less expensive approach using six easily obtained, low or negatively valued raw carbon-containing materials used without prepurification (cookies, chocolate, grass, plastics, roaches, and dog feces) to grow graphene directly on the backside of a Cu foil at 1050 °C under H(2)/Ar flow. The nonvolatile pyrolyzed species were easily removed by etching away the frontside of the Cu. Analysis by Raman spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, and transmission electron microscopy indicates that the monolayer graphene derived from these carbon sources is of high quality.


ACS Nano | 2011

Rational design of hybrid graphene films for high-performance transparent electrodes.

Yu Zhu; Zhengzong Sun; Zheng Yan; Zhong Jin; James M. Tour

Transparent, flexible conducting films were fabricated by using a metallic grid and graphene hybrid film. Transparent electrodes using the hybrid film and transparent substrate such as glass or polyethylene terephthalate (PET) films were assembled. The sheet resistance of the fabricated transparent electrodes was as low as 3 Ω/◻ with the transmittance at ∼80%. At 90% transmittance, the sheet resistance was ∼20 Ω/◻. Both values are among the highest for transparent electrode materials to date. The materials used for the new hybrid electrode are earth-abundant stable elements, which increase their potential usefulness for replacement of indium tin oxide (ITO) in many applications.


Nano Letters | 2010

Resistive Switches and Memories from Silicon Oxide

Jun Yao; Zhengzong Sun; Lin Zhong; Douglas Natelson; James M. Tour

Because of its excellent dielectric properties, silicon oxide (SiO(x)) has long been used and considered as a passive, insulating component in the construction of electronic devices. In contrast, here we demonstrate resistive switches and memories that use SiO(x) as the sole active material and can be implemented in entirely metal-free embodiments. Through cross-sectional transmission electron microscopy, we determine that the switching takes place through the voltage-driven formation and modification of silicon (Si) nanocrystals (NCs) embedded in the SiO(x) matrix, with SiO(x) itself also serving as the source of the formation of this Si pathway. The small sizes of the Si NCs (d ∼ 5 nm) suggest that scaling to ultrasmall domains could be feasible. Meanwhile, the switch also shows robust nonvolatile properties, high ON/OFF ratios (>10(5)), fast switching (sub-100-ns), and good endurance (10(4) write-erase cycles). These properties in a SiO(x)-based material composition showcase its potentials in constructing memory or logic devices that are fully CMOS compatible.


ACS Nano | 2011

Growth of Bilayer Graphene on Insulating Substrates

Zheng Yan; Zhiwei Peng; Zhengzong Sun; Jun Yao; Yu Zhu; Zheng Liu; Pulickel M. Ajayan; James M. Tour

Here we demonstrate a general transfer-free method to directly grow large areas of uniform bilayer graphene on insulating substrates (SiO(2), h-BN, Si(3)N(4), and Al(2)O(3)) from solid carbon sources such as films of poly(2-phenylpropyl)methysiloxane, poly(methyl methacrylate), polystyrene, and poly(acrylonitrile-co-butadiene-co-styrene), the latter leading to N-doped bilayer graphene due to its inherent nitrogen content. Alternatively, the carbon feeds can be prepared from a self-assembled monolayer of butyltriethoxysilane atop a SiO(2) layer. The carbon feedstocks were deposited on the insulating substrates and then caped with a layer of nickel. At 1000 °C, under low pressure and a reducing atmosphere, the carbon source was transformed into a bilayer graphene film on the insulating substrates. The Ni layer was removed by dissolution, affording the bilayer graphene directly on the insulator with no traces of polymer left from a transfer step. The bilayer nature of as-grown samples was demonstrated by I(G)/I(2D) Raman mapping, the statistics of the full-width at half-maximum of the Raman 2D peak, the selected area electron diffraction patterns over a large area, and randomly imaged graphene edges by high-resolution transmission electron microscopy.

Collaboration


Dive into the Zhengzong Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Zhu

University of Akron

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Lu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Sinitskii

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge