Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenkun Zhang is active.

Publication


Featured researches published by Zhenkun Zhang.


Accounts of Chemical Research | 2014

Cooperative Macromolecular Self-Assembly toward Polymeric Assemblies with Multiple and Bioactive Functions

Zhenkun Zhang; Rujiang Ma; Linqi Shi

In the past decades, polymer based nanoscale polymeric assemblies have attracted continuous interest due to their potential applications in many fields, such as nanomedicine. Many efforts have been dedicated to tailoring the three-dimensional architecture and the placement of functional groups at well-defined positions within the polymeric assemblies, aiming to augment their function. To achieve such goals, in one way, novel polymeric building blocks can be designed by controlled living polymerization methodology and advanced chemical modifications. In contrast, by focusing on the end function, others and we have been practicing strategies of cooperative self-assembly of multiple polymeric building blocks chosen from the vast library of conventional block polymers which are easily available. The advantages of such strategies lie in the simplicity of the preparation process and versatile choice of the constituent polymers in terms of their chemical structure and functionality as well as the fact that cooperative self-assembly based on supramolecular interactions offers elegant and energy-efficient bottom-up strategies. Combination of these principles has been exploited to optimize the architecture of polymeric assemblies with improved function, to impart new functionality into micelles and to realize polymeric nanocomplexes exhibiting functional integration, similar to some natural systems like artificial viruses, molecular chaperones, multiple enzyme systems, and so forth. In this Account, we shall first summarize several straightforward designing principles with which cooperative assembly of multiple polymeric building blocks can be implemented, aiming to construct polymeric nanoassemblies with hierarchal structure and enhanced functionalities. Next, examples will be discussed to demonstrate the possibility to create multifunctional nanoparticles by combination of the designing principles and judiciously choosing of the building blocks. We focus on multifunctional nanoparticles which can partially address challenges widely existing in nanomedicine such as long blood circulation, efficient cellular uptake, and controllable release of payloads. Finally, bioactive polymeric assemblies, which have certain functions closely mimicking those of some natural systems, will be used to conceive the concept of functional integration.


Soft Matter | 2013

A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection

Gan Liu; Rujiang Ma; Jie Ren; Zhong Li; Haixia Zhang; Zhenkun Zhang; Yingli An; Linqi Shi

We developed a glucose-responsive complex polymeric micelle (CPM) through the self-assembly of two types of diblock copolymers, poly(ethylene glycol)-b-poly(aspartic acid-co-aspartamidophenylboronic acid) (PEG-b-P(Asp-co-AspPBA)) and poly(N-isopropylacrylamide)-b-poly(aspartic acid-co-aspartamidophenylboronic acid) (PNIPAM-b-P(Asp-co-AspPBA)). By controlling the weight ratio between PNIPAM and PEG (WPNIPAM/WPEG = 6/4), the block copolymers form complex micelles with a novel core–shell–corona structure. By following this structure, the continuous PNIPAM shell collapsed on the glucose-responsive P(Asp-co-AspPBA) core. As a result, the CPM exhibits a reversible swelling in response to changes in the glucose concentration, enabling the repeated on–off release of insulin regulated by glucose level. Furthermore, the CPM could effectively protect the encapsulated insulin against protease degradation. Therefore, this glucose-responsive CPM provides a simple and powerful strategy to construct a self-regulated insulin delivery system for diabetes treatment.


Angewandte Chemie | 2014

Maintenance of Amyloid β Peptide Homeostasis by Artificial Chaperones Based on Mixed‐Shell Polymeric Micelles

Fan Huang; Jianzu Wang; Aoting Qu; Liangliang Shen; Jinjian Liu; Jianfeng Liu; Zhenkun Zhang; Yingli An; Linqi Shi

The disruption of Aβ homeostasis, which results in the accumulation of neurotoxic amyloids, is the fundamental cause of Alzheimers disease (AD). Molecular chaperones play a critical role in controlling undesired protein misfolding and maintaining intricate proteostasis in vivo. Inspired by a natural molecular chaperone, an artificial chaperone consisting of mixed-shell polymeric micelles (MSPMs) has been devised with tunable surface properties, serving as a suppressor of AD. Taking advantage of biocompatibility, selectivity toward aberrant proteins, and long blood circulation, these MSPM-based chaperones can maintain Aβ homeostasis by a combination of inhibiting Aβ fibrillation and facilitating Aβ aggregate clearance and simultaneously reducing Aβ-mediated neurotoxicity. The balance of hydrophilic/hydrophobic moieties on the surface of MSPMs is important for their enhanced therapeutic effect.


ACS Nano | 2016

Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms

Yong Liu; Henk J. Busscher; Bingran Zhao; Yuanfeng Li; Zhenkun Zhang; Henny C. van der Mei; Yijin Ren; Linqi Shi

Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(β-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of the PEG-shell combined with its surface-adaptive charge allow MSPMs to penetrate and accumulate in staphylococcal biofilms, as demonstrated for fluorescent Nile red loaded micelles using confocal-laser-scanning-microscopy. SSPMs, not adapting a positive charge at pH 5.0, could not be demonstrated to penetrate and accumulate in a biofilm. Once micellar nanocarriers are bound to a staphylococcal cell surface, bacterial enzymes degrade the MSPM core to release its antimicrobial content and kill bacteria over the depth of a biofilm. This constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration.


Chemistry: A European Journal | 2013

Temperature‐Responsive Mixed‐Shell Polymeric Micelles for the Refolding of Thermally Denatured Proteins

Xue Liu; Yang Liu; Zhenkun Zhang; Fan Huang; Qian Tao; Rujiang Ma; Yingli An; Linqi Shi

We have fabricated a mixed-shell polymeric micelle (MSPM) that closely mimics the natural molecular chaperone GroEL-GroES complex in terms of structure and functionality. This MSPM, which possesses a shared PLA core and a homogeneously mixed PEG and PNIAPM shell, is constructed through the co-assembly of block copolymers poly(lactide-b-poly(ethylene oxide) (PLA-b-PEG) and poly(lactide)-b-poly(N-isopropylacryamide) (PLA-b-PNIPAM). Above the lower critical solution temperature (LCST) of PNIPAM, the MSPM evolves into a core-shell-corona micelle (CSCM), as a functional state with hydrophobic PNIPAM domains on its surface. Light scattering (LS), TEM, and fluorescence and circular dichroism (CD) spectroscopy were performed to investigate the working mechanism of the chaperone-like behavior of this system. Unfolded protein intermediates are captured by the hydrophobic PNIPAM domains of the CSCM, which prevent harmful protein aggregation. During cooling, PNIPAM reverts into its hydrophilic state, thereby inducing the release of the bound unfolded proteins. The refolding process of the released proteins is spontaneously accomplished by the presence of PEG in the mixed shell. Carbonic anhydrase B (CAB) was chosen as a model to investigate the refolding efficiency of the released proteins. In the presence of MSPM, almost 93 % CAB activity was recovered during cooling after complete denaturation at 70 °C. Further results reveal that this MSPM also works with a wide spectrum of proteins with more-complicated structures, including some multimeric proteins. Given the convenience and generality in preventing the thermal aggregation of proteins, this MSPM-based chaperone might be useful for preventing the toxic aggregation of misfolded proteins in some diseases.


Journal of Colloid and Interface Science | 2012

Enhancement of the photostability and photoactivity of metallo-meso-5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrins by polymeric micelles.

Xin Wang; Zhihua Chai; Rujiang Ma; Lizhi Zhao; Zhenkun Zhang; Yingli An; Linqi Shi

Metallo-meso-5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrins (metallo-TPPSs), such as ZnTPPS, have been widely used as photosensitizers. However, their vulnerability to photodegradation significantly limits their applications. In this contribution, we demonstrate a method to enhance the photostability of metallo-TPPSs while retaining photoactivity via encapsulation inside cores of complex micelles. Poly(ethylene glycol)-b-poly(4-vinylpyridine) (PEG-b-P4VP) and metallo-TPPSs can form complex micelles in acidic solution through electrostatic interactions and then undergo axial coordination with the pyridine moieties of PEG-b-P4VP when the pH is adjusted to 7.4. In this way, metallo-TPPSs are entrapped in the hydrophobic, compact micellar cores, which effectively prevents photodegradation of the metallo-TPPSs that would otherwise occur in aqueous solution. In addition, the photodebromination of 2,3-dibromo-3-phenylpropionic acid (DPP) sensitized with ZnTPPS has been used as a model reaction to study the photosensitive activity of ZnTPPS entrapped in complex micelles. The entrapped ZnTPPSs exhibit pronounced activity and have much higher efficiency and faster photosensitive reaction rates than free ZnTPPS.


RSC Advances | 2015

Thermosensitive Mixed Shell Polymeric Micelles Decorated with Gold Nanoparticles at the Outmost Surface: Tunable Surface Plasmon Resonance and Enhanced Catalytic Properties with Excellent Colloidal Stability

Tao Yin; Xue Liu; Jianzu Wang; Yingli An; Zhenkun Zhang; Linqi Shi

Hybrid particulate composites consisting of noble metal nanoparticles (NPs) and polymeric particles have attracted intensive interest, due to the possibility of combining the precious optical and catalytic properties of the former with the stimuli responsiveness and biocompatibility of the latter. However, it is challenging to prepare hybrid particles that simultaneously have tunable optical and catalytic properties as well as excellent colloidal stability. In the current work, we report a strategy for such hybrid particles, through covalently decorating the outmost surface of mixed shell polymeric micelles (MSPMs) with gold NPs. For this, two block polymers, poly(e-caprolactone)-block-(ethylene glycol) (PCL-b-PEG) and poly(e-caprolactone)-block-poly(N-isopropylacrylamide) (PCL-b-PNIPAM), were prepared by ring-opening polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization, respectively. Co-self-assembly of the two block polymers result in MSPMs with a PCL core and a mixed shell consisting of PEG and PNIPAM. At the end of each PNIPAM chain in the shell, thiol groups are introduced to act as anchors for the in situ formation of gold NPs. The number density of the gold NPs is conveniently tuned through varying the relative amount of PEG/PNIPAM in the micellar shell. Reversible shrinking and extension of the PNIPAM chains regulated by temperature can be used to tune the interparticle distance of the gold NPs, while the whole hybrid particles are stabilized by the stretched PEG chains. The hybrid polymeric micelles exhibit thermoresponsive surface plasmon resonance and enhanced catalytic properties as well as excellent colloidal stability.


Langmuir | 2015

Thermoresponsive Chiral to Nonchiral Ordering Transformation in the Nematic Liquid-Crystal Phase of Rodlike Viruses: Turning the Survival Strategy of a Virus into Valuable Material Properties

Shuaiyu Liu; Tingting Zan; Si Chen; Xiaodong Pei; Henmin Li; Zhenkun Zhang

The current work investigates the thermoresponsive in situ chiral to nonchiral ordering transformation of a rodlike virus in the naturally assembled state-the chiral nematic liquid crystal (CLC) phase. We take this as an elegant example of reconfigurable self-assembly, through which it is possible to realize in situ transformation from one assembled state to another without disrupting the preformed assembly in general or going through a secondary assembling procedure of the disassembled building blocks. The detailed investigation presented here reveals many unique characteristics of the thermoresponsive 3D chiral ordering of rodlike viruses induced by heat stress. The chiral to nonchiral ordering transformation is highly reversible in the temperature range of up to 60 °C and can be repeated many times. There exists a critical temperature around 40 °C which is independent of the ionic strength and virus concentration. Such reconfigurable ordering in the CLC phase stems from the intrinsic structure change of constituent coat proteins without disrupting the structural integrity of the virus, as revealed by three analytical techniques targeting levels ranging from the molecular, secondary conformation of the constituent proteins to the whole single virus, respectively. Such structural flexibility, also termed polymorphism, is relative to the survival strategies of a biological organism such as the virus and can be transformed into very precious material properties. The potential of the virus-based CLC phase as the chiral matrix to regulate chiro-optical properties of gold nanorods is also presented.


ACS Applied Materials & Interfaces | 2015

Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using Förster resonance energy transfer.

Jianzu Wang; Tao Yin; Fan Huang; Yiqing Song; Yingli An; Zhenkun Zhang; Linqi Shi

Controlled and reversible interactions between polymeric nanoparticles and proteins have gained more and more attention with the hope to address many biological issues such as prevention of protein denaturation, interference of the fibrillation of disease relative proteins, removing of toxic biomolecules as well as targeting delivery of proteins, etc. In such cases, proper analytic techniques are needed to reveal the underlying mechanism of the particle-protein interactions. In the current work, Förster Resonance Energy Transfer (FRET) was used to investigate the interaction of our tailor designed artificial chaperone based on mixed shell polymeric micelles (MSPMs) with their substrate proteins. We designed a new kind of MSPMs with fluorescent acceptors precisely placed at the desired locations as well as hydrophobic domains which can adsorb unfolded proteins with a propensity to aggregate. Interactions of such model micelles with a donor-labeled protein-FITC-lysozyme, was monitored by FRET. The fabrication strategy of MSPMs makes it possible to control the accurate location of the acceptor, which is critical to reveal some unexpected insights of the micelle-protein interactions upon heating and cooling. Preadsorption of native proteins onto the hydrophobic domains of the MSPMs is a key step to prevent thermo-denaturation by diminishing interprotein aggregations. Reversible protein adsorption during heating and releasing during cooling have been confirmed. Conclusions from the FRET effect are in line with the measurement of residual enzymatic activity.


ACS Applied Materials & Interfaces | 2016

Effect of the Surface Charge of Artificial Chaperones on the Refolding of Thermally Denatured Lysozymes

Fan Huang; Liangliang Shen; Jianzu Wang; Aoting Qu; Huiru Yang; Zhenkun Zhang; Yingli An; Linqi Shi

Artificial chaperones are of great interest in fighting protein misfolding and aggregation for the protection of protein bioactivity. A comprehensive understanding of the interaction between artificial chaperones and proteins is critical for the effective utilization of these materials in biomedicine. In this work, we fabricated three kinds of artificial chaperones with different surface charges based on mixed-shell polymeric micelles (MSPMs), and investigated their protective effect for lysozymes under thermal stress. It was found that MSPMs with different surface charges showed distinct chaperone-like behavior, and the neutral MSPM with PEG shell and PMEO2MA hydrophobic domain at high temperature is superior to the negatively and positively charged one, because of the excessive electrostatic interactions between the protein and charged MSPMs. The results may benefit to optimize this kind of artificial chaperone with enhanced properties and expand their application in the future.

Collaboration


Dive into the Zhenkun Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Huang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge