Zhenlong Chen
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhenlong Chen.
Molecular Biology of the Cell | 2012
Zhenlong Chen; Farnaz R. Bakhshi; Ayesha N. Shajahan; Tiffany Sharma; Mao Mao; Andy Trane; Pascal Bernatchez; Geerten P. van Nieuw Amerongen; Marcelo G. Bonini; Randal A. Skidgel; Asrar B. Malik; Richard D. Minshall
The mechanism of caveolin-1–dependent eNOS inactivation is not clear. These studies reveal that NO-mediated Src kinase activation and caveolin-1 phosphorylation promote eNOS binding and inactivation, that is, eNOS negative feedback regulation.
Blood | 2012
Guoquan Liu; Aaron T. Place; Zhenlong Chen; Viktor Brovkovych; Stephen M. Vogel; William A. Muller; Randal A. Skidgel; Asrar B. Malik; Richard D. Minshall
Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation.
The FASEB Journal | 2006
Zhenlong Chen; Peter A. Deddish; Richard D. Minshall; Robert P. Becker; Ervin G. Erdös; Fulong Tan
To investigate how angiotensin I‐converting enzyme (ACE) inhibitors enhance the actions of bradykinin (BK) on B2 receptors independent of blocking BK inactivation, we expressed human somatic ACE and B2 receptors in CHO cells. Bradykinin and its ACE‐resistant analog were the receptor agonists. B2 fused with green fluorescent protein (GFP) and ACE were coprecipitated with antisera to GFP or ACE shown in Western blots. Immunohistochemistry of fixed cells localized ACE by red color and B2‐GFP by green. Yellow on plasma membranes of coexpressing cells also indicated enzyme‐receptor complex formation. Using ACE‐fused cyan fluorescent protein donor and B2‐fused yellow fluorescent protein (YFP) acceptor, we registered fluorescence resonance energy transfer (FRET) by the enhanced fluorescence of donor on acceptor photobleaching, establishing close (within 10 nm) positions of B2 receptors and ACE. Bradykinin stimulation cointernalized ACE and B2 receptors. We expressed ACE fused to N terminus of B2 receptors, anchoring only receptors to plasma membranes. Here, in contrast to cells, where both ACE and B2 receptors are separately anchored, ACE inhibitors neither enhance activation of chimeric B2 nor resensitize desensitized B2 receptors. Heterodimer formation between ACE and B2 receptors can be a mechanism for ACE inhibitors to augment kinin activity at cellular level.—Chen, Z., Deddish, P. A., Minshall, R. D., Becker, R. P., Erdös, E. G., Tan, F. Human ACE and bradykinin B2 receptors form a complex at the plasma membrane. FASEB J. 20, 2261–2270 (2006)
Pulmonary circulation | 2013
Farnaz R. Bakhshi; Mao Mao; Ayesha N. Shajahan; Tobias Piegeler; Zhenlong Chen; Olga Chernaya; Tiffany Sharma; W. Mark Elliott; Robert Szulcek; Harm J. Bogaard; Suzy Comhair; Serpil C. Erzurum; Geerten P. van Nieuw Amerongen; Marcelo G. Bonini; Richard D. Minshall
In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α–induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%–80%, similar to that observed in IPAH patient–derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress.
Molecular Pharmacology | 2011
Aaron T. Place; Zhenlong Chen; Farnaz R. Bakhshi; Guoquan Liu; John P. O'Bryan; Richard D. Minshall
In the present study, we assessed the cooperative roles of C-terminal Src kinase (Csk) binding protein (Cbp) and Caveolin-1 (Cav-1) in the mechanism of Src family tyrosine kinase (SFK) inhibition by Csk. SFKs are inactivated by phosphorylation of their C-terminal tyrosine by Csk. Whereas SFKs are membrane-associated, Csk is a cytoplasmic protein and therefore requires membrane adaptors such as Cbp or Cav-1 for recruitment to the plasma membrane to mediate SFK inhibition. To determine the specific role of Cav-1 and Cbp in SFK inhibition, we measured c-Src activity in the absence of each membrane adaptor. It is noteworthy that in lungs and fibroblasts from Cav-1(−/−) mice, we observed increased expression of Cbp compared with wild-type (WT) controls. However, both c-Src activity and Csk localization at the membrane were similar between Cav-1(−/−) fibroblasts and WT cells. Likewise, Cbp depletion by small interfering RNA (siRNA) treatment of WT cells had no effect on basal c-Src activity, but it increased the phosphorylation state of Cav-1. Immunoprecipitation then confirmed increased association of Csk with phosphomimicking Cav-1. Knockdown of Cbp by siRNA in Cav-1(−/−) cells revealed increased basal c-Src activity, and re-expression of WT Cav-1 in the same cells reduced basal c-Src activity. Taken together, these results indicate that Cav-1 and Cbp cooperatively regulate c-Src activity by recruiting Csk to the membrane where it phosphorylates c-Src inhibitory tyrosine 529. Furthermore, when either Cav-1 or Cbp expression is reduced or absent, there is a compensatory increase in the phosphorylation state or expression level of the other membrane-associated Csk adaptor to maintain SFK inhibition.
PLOS ONE | 2011
Sergei M. Danilov; Kerry Gordon; Andrew B. Nesterovitch; Heinrich Lünsdorf; Zhenlong Chen; Maricela Castellon; Isolda A. Popova; Sergey Kalinin; Emma Mendonca; Pavel A. Petukhov; David E. Schwartz; Richard D. Minshall; Edward D. Sturrock
Background Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by mutations in the ACE juxtamembrane region that enhanced the cleavage-secretion process. Recently, we found a family whose affected members had a 6-fold increase in blood ACE and a Tyr465Asp (Y465D) substitution, distal to the stalk region, in the N domain of ACE. Methodology/Principal Findings HEK and CHO cells expressing mutant (Tyr465Asp) ACE demonstrate a 3- and 8-fold increase, respectively, in the rate of ACE shedding compared to wild-type ACE. Conformational fingerprinting of mutant ACE demonstrated dramatic changes in ACE conformation in several different epitopes of ACE. Cell ELISA carried out on CHO-ACE cells also demonstrated significant changes in local ACE conformation, particularly proximal to the stalk region. However, the cleavage site of the mutant ACE - between Arg1203 and Ser1204 - was the same as that of WT ACE. The Y465D substitution is localized in the interface of the N-domain dimer (from the crystal structure) and abolishes a hydrogen bond between Tyr465 in one monomer and Asp462 in another. Conclusions/Significance The Y465D substitution results in dramatic increase in the rate of ACE shedding and is associated with significant local conformational changes in ACE. These changes could result in increased ACE dimerization and accessibility of the stalk region or the entire sACE, thus increasing the rate of cleavage by the putative ACE secretase (sheddase).
Molecular Biology of the Cell | 2016
Adriana M. Zimnicka; Yawer S. Husain; Ayesha N. Shajahan; Maria Sverdlov; Oleg Chaga; Zhenlong Chen; Peter T. Toth; Jennifer E. Klomp; Andrei V. Karginov; Chinnaswamy Tiruppathi; Asrar B. Malik; Richard D. Minshall
Src-induced phosphorylation of Cav-1 is analyzed using live TIRF and FRET microscopy, as well as by biochemical analysis. Cav1 phosphorylation destabilizes plasma membrane–associated Cav-1 oligomers and thereby is crucial for regulating the fission of caveolae from the plasma membrane in vascular endothelial cells.
PLOS ONE | 2010
Sergei M. Danilov; Sergey Kalinin; Zhenlong Chen; Elena I. Vinokour; Andrew B. Nesterovitch; David E. Schwartz; Olivier Gribouval; Marie Claire Gubler; Richard D. Minshall
Background Angiotensin-converting enzyme (ACE; Kininase II; CD143) hydrolyzes small peptides such as angiotensin I, bradykinin, substance P, LH-RH and several others and thus plays a key role in blood pressure regulation and vascular remodeling. Complete absence of ACE in humans leads to renal tubular dysgenesis (RTD), a severe disorder of renal tubule development characterized by persistent fetal anuria and perinatal death. Methodology/Principal Findings Patient with RTD in Lisbon, Portugal, maintained by peritoneal dialysis since birth, was found to have a homozygous substitution of Arg for Glu at position 1069 in the C-terminal domain of ACE (Q1069R) resulting in absence of plasma ACE activity; both parents and a brother who are heterozygous carriers of this mutation had exactly half-normal plasma ACE activity compared to healthy individuals. We hypothesized that the Q1069R substitution impaired ACE trafficking to the cell surface and led to accumulation of catalytically inactive ACE in the cell cytoplasm. CHO cells expressing wild-type (WT) vs. Q1069R-ACE demonstrated the mutant accumulates intracellularly and also that it is significantly degraded by intracellular proteases. Q1069R-ACE retained catalytic and immunological characteristics of WT-ACE N domain whereas it had 10–20% of the nativity of the WT-ACE C domain. A combination of chemical (sodium butyrate) or pharmacological (ACE inhibitor) chaperones with proteasome inhibitors (MG 132 or bortezomib) significantly restored trafficking of Q1069R-ACE to the cell surface and increased ACE activity in the cell culture media 4-fold. Conclusions/Significance Homozygous Q1069R substitution results in an ACE trafficking and processing defect which can be rescued, at least in cell culture, by a combination of chaperones and proteasome inhibitors. Further studies are required to determine whether similar treatment of individuals with this ACE mutation would provide therapeutic benefits such as concentration of primary urine.
Physiological Reports | 2016
Mary Szczurek; Brian K. Blackburn; Jacob T. Mey; Zhenlong Chen; Austin T. Robinson; Jing Tan Bian; Terry G. Unterman; Richard D. Minshall; Michael D. Brown; John P. Kirwan; Shane A. Phillips; Jacob M. Haus
Hyperinsulinemia is a hallmark of insulin resistance‐associated metabolic disorders. Under physiological conditions, insulin maintains a balance between nitric oxide (NO) and, the potent vasoconstrictor, endothelin‐1 (ET‐1). We tested the hypothesis that acute hyperinsulinemia will preferentially augment ET‐1 protein expression, disrupt the equilibrium between ET‐1 expression and endothelial NO synthase (eNOS) activation, and subsequently impair flow‐induced dilation (FID) in human skeletal muscle arterioles. Skeletal muscle biopsies were performed on 18 lean, healthy controls (LHCs) and 9 older, obese, type 2 diabetics (T2DM) before and during (120 min) a 40 mU/m2/min hyperinsulinemic‐euglycemic (5 mmol/L) clamp. Skeletal muscle protein was analyzed for ET‐1, eNOS, phosphorylated eNOS (p‐eNOS), and ET‐1 receptor type A (ETAR) and B (ETBR) expression. In a subset of T2DM (n = 6) and LHCs (n = 5), FID of isolated skeletal muscle arterioles was measured. Experimental hyperinsulinemia impaired FID (% of dilation at ∆60 pressure gradient) in LHCs (basal: 74.2 ± 2.0; insulin: 57.2 ± 3.3, P = 0.003) and T2DM (basal: 62.1 ± 3.6; insulin: 48.9 ± 3.6, P = 0.01). Hyperinsulinemia increased ET‐1 protein expression in LHCs (0.63 ± 0.04) and T2DM (0.86 ± 0.06) compared to basal conditions (LHCs: 0.44 ± 0.05, P = 0.007; T2DM: 0.69 ± 0.06, P = 0.02). Insulin decreased p‐eNOS (serine 1177) only in T2DM (basal: 0.28 ± 0.07; insulin: 0.17 ± 0.04, P = 0.03). In LHCs, hyperinsulinemia disturbed the balance between ETAR and ETBR receptors known to mediate vasoconstrictor and vasodilator actions of ET‐1, respectively. Moreover, hyperinsulinemia markedly impaired plasma NO concentration in both LHCs and T2DM. These data suggest that hyperinsulinemia disturbs the vasomotor balance in human skeletal muscle favoring vasoconstrictive pathways, eventually impairing arteriolar vasodilation.
The Journal of Physiology | 2014
Huazhi Han; Avia Rosenhouse-Dantsker; Radhakrishnan Gnanasambandam; Yulia Epshtein; Zhenlong Chen; Frederick Sachs; Richard D. Minshall; Irena Levitan
Inwardly rectifying potassium channels (Kir) play key roles in regulating membrane excitability and K+ homeostasis in multiple cell types. Our earlier studies showed that Kir2 channels, one of the major subfamilies of Kir, are suppressed by membrane cholesterol and that cholesterol stabilizes these channels in a closed ‘silent’ state. This paper addresses a fundamental question of how Kir2 channels are regulated by caveolins, the major structural proteins of caveolae, and the relationship between the sensitivity of the channels to caveolin and to cholesterol. In this study, we present direct evidence that caveolin‐1 is a negative regulator of Kir2 function and that cholesterol and caveolin‐1 regulate the channels by a common mechanism. This study also challenges a general notion that cholesterol depletion alters ion channel function by disrupting caveolae, demonstrating that neither caveolin‐1 nor intact caveolae are required for cholesterol sensitivity of Kir2 channels. Furthermore, we present first insights into the structural determinants of the cross‐talk between the sensitivity of Kir2 channels to caveolin and to cholesterol.