Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Liang Hu is active.

Publication


Featured researches published by Zhi-Liang Hu.


PLOS ONE | 2009

Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology

A. M. Ramos; R.P.M.A. Crooijmans; Nabeel A. Affara; Andreia J. Amaral; Alan Archibald; Jonathan E. Beever; Christian Bendixen; Carol Churcher; Richard Clark; Patrick Dehais; Mark Hansen; Jakob Hedegaard; Zhi-Liang Hu; Hindrik Hd Kerstens; Andy Law; Hendrik-Jan Megens; Denis Milan; D. J. Nonneman; G. A. Rohrer; Max F. Rothschild; T. P. L. Smith; Robert D. Schnabel; Curt P. Van Tassell; Jeremy F. Taylor; Ralph T Wiedmann; Lawrence B. Schook; M.A.M. Groenen

Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illuminas Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.


Nucleic Acids Research | 2007

AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond

Zhi-Liang Hu; Eric Fritz; James M. Reecy

The Animal Quantitative Trait Loci (QTL) database (AnimalQTLdb) is designed to house all publicly available QTL data on livestock animal species from which researchers can easily locate and compare QTL within species. The database tools are also added to link the QTL data to other types of genomic information, such as radiation hybrid (RH) maps, finger printed contig (FPC) physical maps, linkage maps and comparative maps to the human genome, etc. Currently, this database contains data on 1287 pig, 630 cattle and 657 chicken QTL, which are dynamically linked to respective RH, FPC and human comparative maps. We plan to apply the tool to other animal species, and add more structural genome information for alignment, in an attempt to aid comparative structural genome studies ().


Mammalian Genome | 2005

A QTL resource and comparison tool for pigs: PigQTLDB

Zhi-Liang Hu; Svetlana Dracheva; Wonhee Jang; Donna Maglott; J.W.M. Bastiaansen; Max F. Rothschild; James M. Reecy

During the past decade, efforts to map quantitative trait loci (QTL) in pigs have resulted in hundreds of QTL being reported for growth, meat quality, reproduction, disease resistance, and other traits. It is a challenge to locate, interpret, and compare QTL results from different studies. We have developed a pig QTL database (PigQTLdb) that integrates available pig QTL data in the public domain, thus, facilitating the use of this QTL data in future studies. We also developed a pig trait classification system to standardize names of traits and to simplify organization and searching of the trait data. These steps made it possible to compare primary data from diverse sources and methods. We used existing pig map databases and other publicly available data resources (such as PubMed) to avoid redundant developmental work. The PigQTLdb was also designed to include data representing major genes and markers associated with a large effect on economically important traits. To date, over 790 QTL from 73 publications have been curated into the database. Those QTL cover more than 300 different traits. The data have been submitted to the Entrez Gene and the Map Viewer resources at NCBI, where the information about markers was matched to marker records in NCBI’s UniSTS database. Having these data in a public resource like NCBI allows regularly updated automatic matching of markers to public sequence data by e-PCR. The submitted data, and the results of these calculations, are retrievable from NCBI via Entrez Gene, Map Viewer, and UniSTS. Efforts were undertaken to improve the integrated functional genomics resources for pigs.


BMC Bioinformatics | 2007

MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans

Ting-Hua Huang; Bin Fan; Max F. Rothschild; Zhi-Liang Hu; K. Li; Shuhong Zhao

BackgroundMicroRNAs (miRNAs) are recognized as one of the most important families of non-coding RNAs that serve as important sequence-specific post-transcriptional regulators of gene expression. Identification of miRNAs is an important requirement for understanding the mechanisms of post-transcriptional regulation. Hundreds of miRNAs have been identified by direct cloning and computational approaches in several species. However, there are still many miRNAs that remain to be identified due to lack of either sequence features or robust algorithms to efficiently identify them.ResultsWe have evaluated features valuable for pre-miRNA prediction, such as the local secondary structure differences of the stem region of miRNA and non-miRNA hairpins. We have also established correlations between different types of mutations and the secondary structures of pre-miRNAs. Utilizing these features and combining some improvements of the current pre-miRNA prediction methods, we implemented a computational learning method SVM (support vector machine) to build a high throughput and good performance computational pre-miRNA prediction tool called MiRFinder. The tool was designed for genome-wise, pair-wise sequences from two related species. The method built into the tool consisted of two major steps: 1) genome wide search for hairpin candidates and 2) exclusion of the non-robust structures based on analysis of 18 parameters by the SVM method. Results from applying the tool for chicken/human and D. melanogaster/D. pseudoobscura pair-wise genome alignments showed that the tool can be used for genome wide pre-miRNA predictions.ConclusionThe MiRFinder can be a good alternative to current miRNA discovery software. This tool is available at http://www.bioinformatics.org/mirfinder/.


Nucleic Acids Research | 2016

Developmental progress and current status of the Animal QTLdb

Zhi-Liang Hu; Carissa A. Park; James M. Reecy

The Animal QTL Database (QTLdb; http://www.animalgenome.org/QTLdb) has undergone dramatic growth in recent years in terms of new data curated, data downloads and new functions and tools. We have focused our development efforts to cope with challenges arising from rapid growth of newly published data and end users’ data demands, and to optimize data retrieval and analysis to facilitate users’ research. Evidenced by the 27 releases in the past 11 years, the growth of the QTLdb has been phenomenal. Here we report our recent progress which is highlighted by addition of one new species, four new data types, four new user tools, a new API tool set, numerous new functions and capabilities added to the curator tool set, expansion of our data alliance partners and more than 20 other improvements. In this paper we present a summary of our progress to date and an outlook regarding future directions.


Frontiers in Genetics | 2011

Use of Genome Sequence Information for Meat Quality Trait QTL Mining for Causal Genes and Mutations on Pig Chromosome 17.

Zhi-Liang Hu; A. M. Ramos; Sean Humphray; Jane Rogers; James M. Reecy; Max F. Rothschild

The newly available pig genome sequence has provided new information to fine map quantitative trait loci (QTL) in order to eventually identify causal variants. With targeted genomic sequencing efforts, we were able to obtain high quality BAC sequences that cover a region on pig chromosome 17 where a number of meat quality QTL have been previously discovered. Sequences from 70 BAC clones were assembled to form an 8-Mbp contig. Subsequently, we successfully mapped five previously identified QTL, three for meat color and two for lactate related traits, to the contig. With an additional 25 genetic markers that were identified by sequence comparison, we were able to carry out further linkage disequilibrium analysis to narrow down the genomic locations of these QTL, which allowed identification of the chromosomal regions that likely contain the causative variants. This research has provided one practical approach to combine genetic and molecular information for QTL mining.


BMC Genomics | 2013

Structural and functional annotation of the porcine immunome

Harry Dawson; Jane Loveland; Géraldine Pascal; James Gilbert; Hirohide Uenishi; Katherine Mann; Yongming Sang; Jie Zhang; Denise R. Carvalho-Silva; Toby Hunt; Matthew Hardy; Zhi-Liang Hu; Shuhong Zhao; Anna Anselmo; Hiroki Shinkai; Celine Chen; Bouabid Badaoui; Daniel Berman; Clara Amid; Mike Kay; David Lloyd; Catherine Snow; Takeya Morozumi; Ryan Pei-Yen Cheng; Megan Bystrom; Ronan Kapetanovic; John C. Schwartz; Ranjit Singh Kataria; Matthew Astley; Eric Fritz

BackgroundThe domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.ResultsThe Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome.ConclusionsThis extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


Mammalian Genome | 2007

Animal QTLdb: beyond a repository

Zhi-Liang Hu; James M. Reecy

AbstractOver the past ten years there have been a large number of publications that have described hundreds of quantitative trait loci (QTL) in livestock species. To facilitate the comparison of QTL results across experiments, the Animal QTL database (QTLdb) was developed to house all published QTL information as a public repository. The QTLdb was originally developed to serve the porcine genomics community (previously known as PigQTLdb). We have further developed the QTLdb to house QTL data from multiple species, including but not limited to cattle, chickens, and pigs. In addition, tools have been developed to allow QTL map alignments against consensus linkage maps, radiation hybrid (RH) maps, BAC fingerprinted contig (FPC) maps, single nucleotide polymorphism (SNP) location maps, and human maps. In addition, we have expanded the capabilities of the database such that research tools were developed where “private” preliminary QTL data could be entered and compared against all public data. This allows researchers to visualize data before publication and compare it with published results to aid in data interpretation. To serve this purpose, the database curator/editor tools also include functions that allow registered users to enter their own QTL data, make use of the QTLdb tools for data analysis, and use the QTLdb as a publishing tool (URL: http://www.animalgenome.org).


BMC Genomics | 2010

Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response

Yu Gao; Laurence Flori; Jérôme Lecardonnel; Diane Esquerre; Zhi-Liang Hu; Angélique Teillaud; Gaetan Lemonnier; François Lefèvre; Isabelle P. Oswald; Claire Rogel-Gaillard

BackgroundDesigning sustainable animal production systems that better balance productivity and resistance to disease is a major concern. In order to address questions related to immunity and resistance to disease in pig, it is necessary to increase knowledge on its immune system and to produce efficient tools dedicated to this species.ResultsA long-oligonucleotide-based chip referred to as SLA-RI/NRSP8-13K was produced by combining a generic set with a newly designed SLA-RI set that targets all annotated loci of the pig major histocompatibility complex (MHC) region (SLA complex) in both orientations as well as immunity genes outside the SLA complex.The chip was used to study the immune response of pigs following stimulation of porcine peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) or a mixture of phorbol myristate acetate (PMA) and ionomycin for 24 hours. Transcriptome analysis revealed that ten times more genes were differentially expressed after PMA/ionomycin stimulation than after LPS stimulation. LPS stimulation induced a general inflammation response with over-expression of SAA1, pro-inflammatory chemokines IL8, CCL2, CXCL5, CXCL3, CXCL2 and CCL8 as well as genes related to oxidative processes (SOD2) and calcium pathways (S100A9 and S100A12). PMA/ionomycin stimulation induced a stronger up-regulation of T cell activation than of B cell activation with dominance toward a Th1 response, including IL2, CD69 and TNFRSF9 (tumor necrosis factor receptor superfamily, member 9) genes. In addition, a very intense repression of THBS1 (thrombospondin 1) was observed. Repression of MHC class I genes was observed after PMA/ionomycin stimulation despite an up-regulation of the gene cascade involved in peptide processing. Repression of MHC class II genes was observed after both stimulations. Our results provide preliminary data suggesting that antisense transcripts mapping to the SLA complex may have a role during immune response.ConclusionThe SLA-RI/NRSP8-13K chip was found to accurately decipher two distinct immune response activations of PBMCs indicating that it constitutes a valuable tool to further study immunity and resistance to disease in pig. The transcriptome analysis revealed specific and common features of the immune responses depending on the stimulation agent that increase knowledge on pig immunity.


PLOS ONE | 2012

Prediction of altered 3'- UTR miRNA-binding sites from RNA-Seq data: the swine leukocyte antigen complex (SLA) as a model region.

Marie-Laure Endale Ahanda; Eric Fritz; Jordi Estellé; Zhi-Liang Hu; Ole Madsen; M.A.M. Groenen; Dario Beraldi; Ronan Kapetanovic; David A. Hume; Robert R. R. Rowland; Joan K. Lunney; Claire Rogel-Gaillard; James M. Reecy; Elisabetta Giuffra

The SLA (swine leukocyte antigen, MHC: SLA) genes are the most important determinants of immune, infectious disease and vaccine response in pigs; several genetic associations with immunity and swine production traits have been reported. However, most of the current knowledge on SLA is limited to gene coding regions. MicroRNAs (miRNAs) are small molecules that post-transcriptionally regulate the expression of a large number of protein-coding genes in metazoans, and are suggested to play important roles in fine-tuning immune mechanisms and disease responses. Polymorphisms in either miRNAs or their gene targets may have a significant impact on gene expression by abolishing, weakening or creating miRNA target sites, possibly leading to phenotypic variation. We explored the impact of variants in the 3′-UTR miRNA target sites of genes within the whole SLA region. The combined predictions by TargetScan, PACMIT and TargetSpy, based on different biological parameters, empowered the identification of miRNA target sites and the discovery of polymorphic miRNA target sites (poly-miRTSs). Predictions for three SLA genes characterized by a different range of sequence variation provided proof of principle for the analysis of poly-miRTSs from a total of 144 M RNA-Seq reads collected from different porcine tissues. Twenty-four novel SNPs were predicted to affect miRNA-binding sites in 19 genes of the SLA region. Seven of these genes (SLA-1, SLA-6, SLA-DQA, SLA-DQB1, SLA-DOA, SLA-DOB and TAP1) are linked to antigen processing and presentation functions, which is reminiscent of associations with disease traits reported for altered miRNA binding to MHC genes in humans. An inverse correlation in expression levels was demonstrated between miRNAs and co-expressed SLA targets by exploiting a published dataset (RNA-Seq and small RNA-Seq) of three porcine tissues. Our results support the resource value of RNA-Seq collections to identify SNPs that may lead to altered miRNA regulation patterns.

Collaboration


Dive into the Zhi-Liang Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vasant G. Honavar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anna Anselmo

Parco Tecnologico Padano

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge