Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Liang Zheng is active.

Publication


Featured researches published by Zhi-Liang Zheng.


Plant Physiology | 2005

Transcriptome Analysis Reveals Specific Modulation of Abscisic Acid Signaling by ROP10 Small GTPase in Arabidopsis

Zeyu Xin; Yihong Zhao; Zhi-Liang Zheng

Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important growth and developmental processes and various stresses responses, but its signal transduction pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis (Arabidopsis thaliana), is a plasma membrane-associated protein specifically involved in negative regulation of ABA responses. To dissect the ROP10-mediated ABA signaling, we carried out transcriptome analysis using the Arabidopsis full-genome chip. Our analysis revealed a total of 262 and 125 genes that were, respectively, up- and down-regulated (≥2-fold cutoff) by 1 μm ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not been identified in other studies. Consistent with the nonpleiotropic phenotypes of rop10-1, only three genes were altered in rop10-1 in the absence of ABA treatment. In response to 1 μm ABA, 341 and 127 genes were, respectively, activated and repressed in rop10-1. Interestingly, a particular subset of 21 genes that were not altered by 1 μm ABA in Ws but only activated in rop10-1 was identified. Reverse transcription-polymerase chain reaction analysis revealed the existence of three distinct categories of ABA dose-response patterns. One novel category is characterized by their ABA unresponsiveness in Ws and activation in rop10-1 at 1 μm but not 10 and 100 μm of ABA. This indicates that ROP10 gates the expression of genes that are specific to low concentrations of ABA. Furthermore, almost all of these 21 genes are known to be highly induced by various biotic and abiotic stresses. Consequently, we found that rop10-1 enhanced the sensitivity of seed germination inhibition to mannitol and sodium chloride. Our results suggest that ROP10 negatively regulates ABA responses by specifically and differentially modulating the ABA sensitivity of a subset of genes including protein kinases and zinc-finger family proteins.


PLOS ONE | 2007

A Mutation in MRH2 Kinesin Enhances the Root Hair Tip Growth Defect Caused by Constitutively Activated ROP2 Small GTPase in Arabidopsis

Guohua Yang; Peng Gao; Hua Zhang; Shanjin Huang; Zhi-Liang Zheng

Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during polarized growth of root hairs.


Plant Physiology | 2009

The Arabidopsis A4 Subfamily of Lectin Receptor Kinases Negatively Regulates Abscisic Acid Response in Seed Germination

Zeyu Xin; Anyou Wang; Guohua Yang; Peng Gao; Zhi-Liang Zheng

Abscisic acid (ABA) is an important plant hormone for a wide array of growth and developmental processes and stress responses, but the mechanism of ABA signal perception on the plasma membrane remains to be dissected. A previous GeneChip analysis revealed that a member of the A4 subfamily of lectin receptor kinases (LecRKs) of Arabidopsis (Arabidopsis thaliana), At5g01540 (designated LecRKA4.1), is up-regulated in response to a low dose of ABA in the rop10-1 background. Here, we present functional evidence to support its role in ABA response. LecRKA4.1 is expressed in seeds and leaves but not in roots, and the protein is localized to the plasma membrane. A T-DNA knockout mutant, lecrka4.1-1, slightly enhanced ABA inhibition of seed germination. Interestingly, LecRKA4.1 is adjacent to two other members of the A4 subfamily of LecRK genes, At5g01550 (LecRKA4.2) and At5g01560 (LecRKA4.3). We found that loss-of-function mutants of LecRKA4.2 and LecRKA4.3 exhibited similarly weak enhancement of ABA response in seed germination inhibition. Furthermore, LecRKA4.2 suppression by RNA interference in lecrka4.1-1 showed stronger ABA inhibition of seed germination than lecrka4.1-1, while the response to gibberellic acid was not affected in lecrka4.1-1 and lecrka4.1-1; LecRKA4.2 (RNAi) lines. Expression studies, together with network-based analysis, suggest that LecRKA4.1 and LecRKA4.2 regulate some of the ABA-responsive genes. Taken together, our results demonstrate that the A4 subfamily of LecRKs has a redundant function in the negative regulation of ABA response in seed germination.


Plant Journal | 2014

Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status

Bo Zhang; Rita Pasini; Hanbin Dan; Naveen Joshi; Yihong Zhao; Thomas Leustek; Zhi-Liang Zheng

Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1-15 and sel1-16, which show increased expression of a sulfur deficiency-activated gene β-glucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high-affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1-15 and sel1-16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild-type, but showed higher expression of BGLU28 and other sulfur deficiency-activated genes than wild-type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1-15 and sel1-16. Taken together, the genetic evidence suggests that, in addition to its known function as a high-affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.


PLOS ONE | 2008

The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

Peng Gao; Zeyu Xin; Zhi-Liang Zheng

The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2016

C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast

Bo Zhang; Guohua Yang; Yu Chen; Yihong Zhao; Peng Gao; Bo Liu; Haiyang Wang; Zhi-Liang Zheng

Significance Rho GTPase and polymerase II (Pol II), two key molecules involved in cellular signaling and transcription in eukaryotic organisms, have been separately studied for more than 2 decades without evidence showing their functional linkage. We provide genetic and biochemical evidence linking these two molecules in an intracellular signaling pathway. Rho GTPases in Arabidopsis and yeast can modulate the phosphorylation status of the Pol II C-terminal domain (CTD) by inhibiting the CTD phosphatases. Our finding renders strong support for a direct or “shortcut” model in transcriptional control. Compared with the classical transcriptional activator/repressor-mediated indirect model, this shortcut model of targeting the core of Pol II likely provides an efficient transcriptional control to rapidly bring about the broad changes in gene expression. Rho GTPases, including the Rho, Cdc42, Rac, and ROP subfamilies, act as pivotal signaling switches in various growth and developmental processes. Compared with the well-defined role of cytoskeletal organization in Rho signaling, much less is known regarding transcriptional regulation. In a mutant screen for phenotypic enhancers of transgenic Arabidopsis plants expressing a constitutively active form of ROP2 (designated CA1-1), we identified RNA polymerase II (Pol II) C-terminal domain (CTD) phosphatase-like 1 (CPL1) as a transcriptional regulator of ROP2 signaling. We show that ROP2 activation inhibits CPL1 activity by promoting its degradation, leading to an increase in CTD Ser5 and Ser2 phosphorylation. We also observed similar modulation of CTD phosphorylation by yeast Cdc42 GTPase and enhanced degradation of the yeast CTD phosphatase Fcp1 by activated ROP2 signaling. Taken together, our results suggest that modulation of the Pol II CTD code by Rho GTPase signaling represents an evolutionarily conserved mechanism in both unicellular and multicellular eukaryotes.


Frontiers in Plant Science | 2016

Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck)

Dingquang Huang; Yihong Zhao; Minghao Cao; Liang Qiao; Zhi-Liang Zheng

Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control.


PLOS ONE | 2010

OsPIE1, the Rice Ortholog of Arabidopsis PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1, Is Essential for Embryo Development

Yonghan Xu; Minjuan Deng; Jianfei Peng; Zhanghua Hu; Lieming Bao; Junming Wang; Zhi-Liang Zheng

Background The SWR1 complex is important for the deposition of histone variant H2A.Z into chromatin necessary to robustly regulate gene expression during growth and development. In Arabidopsis thaliana, the catalytic subunit of the SWR1-like complex, encoded by PIE1 (PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1), has been shown to function in multiple developmental processes including flowering time pathways and petal number regulation. However, the function of the PIE1 orthologs in monocots remains unknown. Methodology/Findings We report the identification of the rice (Oryza sativa) ortholog, OsPIE1. Although OsPIE1 does not exhibit a conserved exon/intron structure as Arabidopsis PIE1, its encoded protein is highly similar to PIE1, sharing 53.9% amino acid sequence identity. OsPIE1 also has a very similar expression pattern as PIE1. Furthermore, transgenic expression of OsPIE1 completely rescued both early flowering and extra petal number phenotypes of the Arabidopsis pie1-2 mutant. However, homozygous T-DNA insertional mutants of OsPIE1 in rice were embryonically lethal, in contrast to the viable mutants in the orthologous genes for yeast, Drosophila and Arabidopsis (Swr1, DOMINO and PIE1, respectively). Conclusions/Significance Taken together, our results suggest that OsPIE1 is the rice ortholog of Arabidopsis PIE1 and plays an essential role in rice embryo development.


Drug and Alcohol Dependence | 2017

Analysis of alcohol use disorders from the Nathan Kline Institute—Rockland Sample: Correlation of brain cortical thickness with neuroticism

Yihong Zhao; Zhi-Liang Zheng; F. Xavier Castellanos

BACKGROUND Although differences in both neuroanatomical measures and personality traits, in particular neuroticism, have been associated with alcohol use disorders (AUD), whether lifetime AUD diagnosis alters the relationship between neuroticism and neuroanatomical structures remains to be determined. METHODS Data from 65 patients with lifetime AUD diagnoses and 65 healthy comparisons (HC) group-matched on age, sex and race were extracted from the Nathan Kline Institute - Rockland Sample data set. Each subject completed personality trait measures and underwent MRI scanning. Cortical thickness measures at 68 Desikan-Killiany Atlas regions were obtained using FreeSurfer 5.3.0. Regression analyses were performed to identify brain regions at which the neuroticism-cortical thickness relationship was altered by lifetime AUD status. RESULTS As expected, AUDs had higher neuroticism scores than HCs. Correlations between neuroticism and cortical thickness in the left insula and right fusiform differed significantly across groups. Higher neuroticism score in AUD and the interaction between the insular cortical thickness-neuroticism correlation and AUD status were confirmed in a replication study using the Human Connectome Project data set. CONCLUSIONS Results confirmed the relationship between neuroticism and AUD and suggests that specific cortical regions, particularly the left insula, represent anatomic substrates underlying this association in AUD.


New Phytologist | 2018

Arabidopsis γ-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation

Naveen Joshi; Andreas J. Meyer; Sajid Ali Khan Bangash; Zhi-Liang Zheng; Thomas Leustek

γ-Glutamylcyclotransferase initiates glutathione degradation to component amino acids l-glutamate, l-cysteine and l-glycine. The enzyme is encoded by three genes in Arabidopsis thaliana, one of which (GGCT2;1) is transcriptionally upregulated by starvation for the essential macronutrient sulfur (S). Regulation by S-starvation suggests that GGCT2;1 mobilizes l-cysteine from glutathione when there is insufficient sulfate for de novo l-cysteine synthesis. The response of wild-type seedlings to S-starvation was compared to ggct2;1 null mutants. S-starvation causes glutathione depletion in S-starved wild-type seedlings, but higher glutathione is maintained in the primary root tip than in other seedling tissues. Although GGCT2;1 is induced throughout seedlings, its expression is concentrated in the primary root tip where it activates the γ-glutamyl cycle. S-starved wild-type plants also produce longer primary roots, and lateral root growth is suppressed. While glutathione is also rapidly depleted in ggct2;1 null seedlings, much higher glutathione is maintained in the primary root tip compared to the wild-type. S-starved ggct2;1 primary roots grow longer than the wild-type, and lateral root growth is not suppressed. These results point to a role for GGCT2;1 in S-starvation-response changes to root system architecture through activity of the γ-glutamyl cycle in the primary root tip. l-Cysteine mobilization from glutathione is not solely a function of GGCT2;1.

Collaboration


Dive into the Zhi-Liang Zheng's collaboration.

Top Co-Authors

Avatar

Peng Gao

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guohua Yang

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeyu Xin

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Zhang

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge