Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Ming Zheng is active.

Publication


Featured researches published by Zhi-Ming Zheng.


RNA | 2009

Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6

Xiaohong Wang; Hsu-Kun Wang; John P McCoy; Nilam Sanjib Banerjee; Janet S. Rader; Thomas R. Broker; Craig A Meyers; Louise Chow; Zhi-Ming Zheng

MicroRNAs (miRNA) play pivotal roles in controlling cell proliferation and differentiation. Aberrant miRNA expression in human is becoming recognized as a new molecular mechanism of carcinogenesis. However, the causes for alterations in miRNA expression remain largely unknown. Infection with oncogenic human papillomavirus types 16 (HPV16) and 18 (HPV18) can lead to cervical and other ano-genital cancers. Here, we have demonstrated that cervical cancer tissues and cervical cancer-derived cell lines containing oncogenic HPVs display reduced expression of tumor-suppressive miR-34a. The reduction of miR-34a expression in organotypic tissues derived from HPV-containing primary human keratinocytes correlates with the early productive phase and is attributed to the expression of viral E6, which destabilizes the tumor suppressor p53, a known miR-34a transactivator. Knockdown of viral E6 expression in HPV16(+) and HPV18(+) cervical cancer cell lines by siRNAs leads to an increased expression of p53 and miR-34a and accumulation of miR-34a in G(0)/G(1) phase cells. Ectopic expression of miR-34a in HPV18(+) HeLa cells and HPV(-) HCT116 cells results in a substantial induction of cell growth retardation and a moderate cell apoptosis. Together, this is the first time a viral oncoprotein has been shown to regulate cellular miRNA expression. Our data have provided new insights into mechanisms by which high-risk HPVs contribute to the development of cervical cancer.


Journal of Virology | 2006

The E7 Oncoprotein Is Translated from Spliced E6*I Transcripts in High-Risk Human Papillomavirus Type 16- or Type 18-Positive Cervical Cancer Cell Lines via Translation Reinitiation

Shuang Tang; Mingfang Tao; J. Philip McCoy; Zhi-Ming Zheng

ABSTRACT High-risk human papillomaviruses (HPVs) encode two viral oncoproteins, E6 and E7, from a single bicistronic pre-mRNA containing three exons and two introns. Retention of intron 1 in the E6 coding region is essential for production of the full-length E6 oncoprotein. However, splicing of intron 1 is extremely efficient in cervical cancer cells, leading to the production of a spliced transcript, E6*I, of E6. Here, we investigated whether this splicing of intron 1 might benefit E7 production. Using RNA interference as a tool, we targeted the intron 1 region using small interfering RNAs (siRNAs) in HPV-positive cell lines. At an effective low dose, the siRNAs specifically suppressed E6 expression but not E7 expression, as demonstrated by the stabilization of p53. However, at high doses the HPV18 intron 1-specific siRNA substantially and specifically reduced the level of the 18E6*I mRNA lacking the intron region in HeLa cells, implying its nuclear silencing on the pre-mRNA before RNA splicing. Two other siRNAs targeting the exon 2 regions of HPV16 and -18, which encode the E7 oncoprotein, reduced the E6*I mRNAs to a remarkable extent and preferentially suppressed expression of E7, leading to accumulation of hypophosphorylated p105Rb and cell cycle arrest, indicating that the majority of E7 proteins are the translational products of E6*I mRNAs. This was confirmed by transient transfection in 293 cells: E7 could be translated only from the E7 open reading frame (ORF) on E6*I mRNA in a distance-dependent matter of upstream E6*I ORF by translation reinitiation. The data thus provide direct evidence that the E6*I mRNAs of high-risk HPVs are responsible for E7 production.


Proceedings of the National Academy of Sciences of the United States of America | 2014

microRNAs are biomarkers of oncogenic human papillomavirus infections

Xiaohong Wang; Hsu-Kun Wang; Yang Li; Markus Hafner; Nilam Sanjib Banerjee; Shuang Tang; Daniel Briskin; Craig Meyers; Louise T. Chow; Xing Xie; Thomas Tuschl; Zhi-Ming Zheng

Significance Persistent infections with high-risk human papillomaviruses (HPVs) lead to development of cervical, penile, anal, and oropharyngeal cancers. The ability to diagnose HPV infections has been dependent on the detection of viral DNA, on virus-associated cytological and histological abnormalities, and on a few virus-induced host proteins. In this study, we identified a subset of host microRNAs regulated specifically by HPV16 or HPV18 infection in in vitro model systems. The elevated expression of miR-16, miR-25, miR-92a, and miR-378 and the decreased expression of miR-22, miR-27a, miR-29a, and miR-100 were attributed to viral oncoprotein E6 or E7. An expression ratio ≥1.5 of miR-25/92a group over miR-22/29a group was found to be informative in distinguishing normal cervix from cervical intraepithelial neoplasia and cervical cancers. Cellular and viral microRNAs (miRNAs) are the transcriptional products of RNA polymerase II and are regulated by transcriptional factors for their differential expression. The altered expression of miRNAs in many cancer types has been explored as a marker for possible diagnosis and therapy. We report in this study that oncogenic human papillomaviruses (HPVs) induce aberrant expression of many cellular miRNAs and that HPV18 infection produces no detectable viral miRNA. Thirteen abundant host miRNAs were specifically regulated by HPV16 and HPV18 in organotypic raft cultures of foreskin and vaginal keratinocytes as determined by miRNA array in combination with small RNA sequencing. The increase of miR-16, miR-25, miR-92a, and miR-378 and the decrease of miR-22, miR-27a, miR-29a, and miR-100 could be attributed to viral oncoprotein E6, E7, or both, all of which are known to target many cellular transcription factors. The examination of 158 cervical specimens, including 38 normal, 52 cervical intraepithelial neoplasia (CIN), and 68 cervical cancer (CC) tissues, for the expression of these eight miRNAs showed a remarkable increase of miR-25, miR-92a, and miR-378 with lesion progression but no obvious change of miR-22, miR-29a, and miR-100 among the HPV-infected tissues. Further analyses indicate that an expression ratio ≥1.5 of miR-25/92a group over miR-22/29a group could serve as a cutoff value to distinguish normal cervix from CIN and from CIN to CC.


Journal of Biological Chemistry | 2006

Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility

Motoko Unoki; Jiang Cheng Shen; Zhi-Ming Zheng; Curtis C. Harris

The ING4 gene is a candidate tumor suppressor gene that functions in cell proliferation, contact inhibition, and angiogenesis. We identified three novel splice variants of ING4 with differing activities in controlling cell proliferation, cell spreading, and cell migration. ING4_v1 (the longest splice variant), originally identified as ING4, encodes an intact nuclear localization signal (NLS), whereas the other three splice variants (ING4_v2, ING4_v3, and ING4_v4) lack the full NLS, resulting in increased cytoplasmic localization of these proteins. We found that one of the three ING4 variants, ING4_v2, is expressed at the same level as the original ING4 (ING4_v1), suggesting that ING4 variants may have significant biological functions. Growth suppressive effects of the variants that have a partial NLS (ING4_v2 and ING4_v4) were attenuated by a weaker effect of the variants on p21WAF1 promoter activation. ING4_v4 lost cell spreading and migration suppressive effects; on the other hand, ING4_v2 retained a cell migration suppressive effect but lost a cell spreading suppressive effect. Therefore, ING4_v2, which localized primarily into cytoplasm, might have an important role in the regulation of cell migration. We also found that ING4_v4 played dominant-negative roles in the induction of p21WAF1 promoter activation and in the suppression of cell motility by ING4_v1. In addition, ING4 variants had different binding affinities to two cytoplasmic proteins, protein-tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), α1, and G3BP2a. Understanding the functions of the four splice variants may aid in defining their roles in human carcinogenesis.


Journal of Clinical Microbiology | 2005

Could Human Papillomaviruses Be Spread through Blood

Sohrab Bodaghi; Lauren V. Wood; Gregg Roby; Celia Ryder; Seth M. Steinberg; Zhi-Ming Zheng

ABSTRACT The human papillomaviruses (HPVs) are epitheliotropic viruses that require the environment of a differentiating squamous epithelium for their life cycle. HPV infection through abrasion of the skin or sexual intercourse causes benign warts and sometimes cancer. HPV DNA detected in the blood has been interpreted as having originated from metastasized cancer cells. The present study examined HPV DNA in banked, frozen peripheral blood mononuclear cells (PBMCs) from 57 U.S. human immunodeficiency virus (HIV)-infected pediatric patients collected between 1987 and 1996 and in fresh PBMCs from 19 healthy blood donors collected in 2002 to 2003. Eight patients and three blood donors were positive mostly for two subgroups of the HPV type 16 genome. The HPV genome detected in all 11 PBMC samples existed as an episomal form, albeit at a low DNA copy number. Among the eight patients, seven acquired HIV from transfusion (three associated with hemophilia) and one acquired HIV through vertical transmission; this patient also had received a transfusion before sampling. Our data suggest that PBMCs may be HPV carriers and might spread the virus through blood.


Journal of Virology | 2011

Kaposi's Sarcoma-Associated Herpesvirus ORF57 Promotes Escape of Viral and Human Interleukin-6 from MicroRNA-Mediated Suppression

Jeong-Gu Kang; Natalia Pripuzova; Vladimir Majerciak; Michael J. Kruhlak; Shu-Yun Le; Zhi-Ming Zheng

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) lytic infection increases the expression of viral and human interleukin-6 (vIL-6 and hIL-6, respectively), an important factor for cell growth and pathogenesis. Here, we report genome-wide analysis of viral RNA targets of KSHV ORF57 by a novel UV-cross-linking and immunoprecipitation (CLIP) assay. We identified 11 viral transcripts as putative ORF57 targets and demonstrate that vIL-6 mRNA is an authentic target of ORF57. Disrupting the ORF57 gene in the KSHV genome leads to inefficient expression of vIL-6. With transient transfection, the expression of vIL-6 could be enhanced greatly in the presence of ORF57 in a dose-dependent manner. We found that the open reading frame (ORF) region of vIL-6 RNA contains an MRE (MTA [ORF57]-responsive element) composed of two motifs, MRE-A and MRE-B, and binding of ORF57 to these two motifs stabilizes vIL-6 RNA and promotes vIL-6 translation. We demonstrate that vIL-6 MRE-B bears an miR-1293 binding site and that, mechanistically, ORF57 competes with miR-1293 for the same binding site to interact with vIL-6 RNA, thereby preventing vIL-6 RNA from association with the miR-1293-specified RNA-induced silencing complex (RISC). Consistent with this, ORF57 also interacts with an miR-608 binding site in the hIL-6 ORF and prevents miR-608 repression of hIL-6. Collectively, our results identify a novel function of ORF57 in being responsible for stabilization of viral and human IL-6 RNAs and the corresponding enhancement of RNA translation. In addition, our data provide the first evidence that a tumor virus may use a viral protein to interfere with microRNA (miRNA)-mediated repression of an miRNA target to induce cell proliferation and tumorigenesis during virus infection.


Journal of Virology | 2009

Control of the Papillomavirus Early-to-Late Switch by Differentially Expressed SRp20

Rong Jia; Xuefeng Liu; Mingfang Tao; Michael J. Kruhlak; Ming Guo; Craig Meyers; Carl C. Baker; Zhi-Ming Zheng

ABSTRACT The viral early-to-late switch of papillomavirus infection is tightly linked to keratinocyte differentiation and is mediated in part by alternative mRNA splicing. Here, we report that SRp20, a cellular splicing factor, controls the early-to-late switch via interactions with A/C-rich RNA elements. An A/C-rich SE4 element regulates the selection of a bovine papillomavirus type 1 (BPV-1) late-specific splice site, and binding of SRp20 to SE4 suppresses this selection. Expression of late BPV-1 L1 or human papillomavirus (HPV) L1, the major capsid protein, inversely correlates with SRp20 levels in the terminally differentiated keratinocytes. In HPV type 16, a similar SRp20-interacting element also controls the viral early-to-late switch. Keratinocytes in raft cultures, which support L1 expression, make considerably less SRp20 than keratinocytes in monolayer cultures, which do not support L1 expression. Conversely, abundant SRp20 in cancer cells or undifferentiated keratinocytes is important for the expression of the viral early E6 and E7 by promoting the expression of cellular transcription factor SP1 for transactivation of viral early promoters.


Journal of Virology | 2011

Construction of a full transcription map of human papillomavirus type 18 during productive viral infection

Xiaohong Wang; Craig Meyers; Hsu-Kun Wang; Louise T. Chow; Zhi-Ming Zheng

ABSTRACT Human papillomavirus type 18 (HPV18) is the second most common oncogenic HPV genotype, responsible for ∼15% of cervical cancers worldwide. In this study, we constructed a full HPV18 transcription map using HPV18-infected raft tissues derived from primary human vaginal or foreskin keratinocytes. By using 5′ rapid amplification of cDNA ends (RACE), we mapped two HPV18 transcription start sites (TSS) for early transcripts at nucleotide (nt) 55 and nt 102 and the HPV18 late TSS frequently at nt 811, 765, or 829 within the E7 open reading frame (ORF) of the virus genome. HPV18 polyadenylation cleavage sites for early and late transcripts were mapped to nt 4270 and mainly to nt 7299 or 7307, respectively, by using 3′ RACE. Although all early transcripts were cleaved exclusively at a single cleavage site, HPV18 late transcripts displayed the heterogeneity of 3′ ends, with multiple minor cleavage sites for late RNA polyadenylation. HPV18 splice sites/splice junctions for both early and late transcripts were identified by 5′ RACE and primer walking techniques. Five 5′ splice sites (donor sites) and six 3′ splice sites (acceptor sites) that are highly conserved in other papillomaviruses were identified in the HPV18 genome. HPV18 L1 mRNA translates a L1 protein of 507 amino acids (aa), smaller than the 568 aa residues previously predicted. Collectively, a full HPV18 transcription map constructed from this report will lead us to further understand HPV18 gene expression and virus oncogenesis.


Journal of Virology | 2007

Targeted Disruption of Kaposi's Sarcoma-Associated Herpesvirus ORF57 in the Viral Genome Is Detrimental for the Expression of ORF59, K8α, and K8.1 and the Production of Infectious Virus

Vladimir Majerciak; Natalia Pripuzova; J. Philip McCoy; Shou-Jiang Gao; Zhi-Ming Zheng

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) ORF57 regulates viral gene expression at the posttranscriptional level during viral lytic infection. To study its function in the context of the viral genome, we disrupted KSHV ORF57 in the KSHV genome by transposon-based mutagenesis. The insertion of the transposon into the ORF57 exon 2 region also interrupted the 3′ untranslated region of KSHV ORF56, which overlaps with the ORF57 coding region. The disrupted viral genome, Bac36-Δ57, did not express ORF57, ORF59, K8α, K8.1, or a higher level of polyadenylated nuclear RNA after butyrate induction and could not be induced to produce infectious viruses in the presence of valproic acid, a histone deacetylase inhibitor and a novel KSHV lytic cycle inducer. The ectopic expression of ORF57 partially complemented the replication deficiency of the disrupted KSHV genome and the expression of the lytic gene ORF59. The induced production of infectious virus particles from the disrupted KSHV genome was also substantially restored by the simultaneous expression of both ORF57 and ORF56; complementation by ORF57 alone only partially restored the production of virus, and expression of ORF56 alone showed no effect. Altogether, our data indicate that in the context of the viral genome, KSHV ORF57 is essential for ORF59, K8α, and K8.1 expression and infectious virus production.


Oncogene | 2013

Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence.

Tang Y; Izumi Horikawa; Masahiko Ajiro; Ana I. Robles; Kaori Fujita; Abdul M. Mondal; Stauffer Jk; Zhi-Ming Zheng; Curtis C. Harris

Most human pre-mRNA transcripts are alternatively spliced, but the significance and fine-tuning of alternative splicing in different biological processes is only starting to be understood. SRSF3 (SRp20) is a member of a highly conserved family of splicing factors that have critical roles in key biological processes, including tumor progression. Here, we show that SRSF3 regulates cellular senescence, a p53-mediated process to suppress tumorigenesis, through TP53 alternative splicing. Downregulation of SRSF3 was observed in normal human fibroblasts undergoing replicative senescence, and was associated with the upregulation of p53β, an alternatively spliced isoform of p53 that promotes p53-mediated senescence. Knockdown of SRSF3 by short interfering RNA (siRNA) in early-passage fibroblasts induced senescence, which was associated with elevated expression of p53β at mRNA and protein levels. Knockdown of p53 partially rescued SRSF3-knockdown-induced senescence, suggesting that SRSF3 acts on p53-mediated cellular senescence. RNA pulldown assays demonstrated that SRSF3 binds to an alternatively spliced exon uniquely included in p53β mRNA through the consensus SRSF3-binding sequences. RNA crosslinking and immunoprecipitation assays (CLIP) also showed that SRSF3 in vivo binds to endogenous p53 pre-mRNA at the region containing the p53β-unique exon. Splicing assays using a transfected TP53 minigene in combination with siRNA knockdown of SRSF3 showed that SRSF3 functions to inhibit the inclusion of the p53β-unique exon in splicing of p53 pre-mRNA. These data suggest that downregulation of SRSF3 represents an endogenous mechanism for cellular senescence that directly regulates the TP53 alternative splicing to generate p53β. This study uncovers the role for general splicing machinery in tumorigenesis, and suggests that SRSF3 is a direct regulator of p53.

Collaboration


Dive into the Zhi-Ming Zheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masahiko Ajiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael J. Kruhlak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carl C. Baker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Craig Meyers

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jun Zhu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shuang Tang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mingfang Tao

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge