Zhicong Yu
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhicong Yu.
Physics in Medicine and Biology | 2016
Zhicong Yu; Shuai Leng; Steven M. Jorgensen; Zhoubo Li; R. Gutjahr; Baiyu Chen; Ahmed F. Halaweish; Steffen Kappler; Lifeng Yu; Erik L. Ritman; Cynthia H. McCollough
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
Physics in Medicine and Biology | 2012
Zhicong Yu; Frédéric Noo; Adam Wunderlich; Günter Lauritsch; Joachim Hornegger
Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files.
Investigative Radiology | 2016
Ralf Gutjahr; Ahmed F. Halaweish; Zhicong Yu; Shuai Leng; Lifeng Yu; Zhoubo Li; Steven M. Jorgensen; Erik L. Ritman; Steffen Kappler; Cynthia H. McCollough
ObjectivesThe purpose of this work was to measure and compare the iodine contrast-to-noise ratio (CNR) between a commercial energy-integrating detector (EID) computed tomography (CT) system and a photon-counting detector (PCD) CT scanner capable of human imaging at clinical dose rates, as well as to determine clinical feasibility using human cadavers. Materials and MethodsA research dual-source PCD-CT scanner was used, where the “A” tube/detector subsystem used an EID and the “B” tube/detector subsystem used a PCD. Iodine CNR was measured in 4 anthropomorphic phantoms, simulating 4 patient sizes, at 4 tube potential settings. After biospecimen committee approval, PCD scans were performed on a fresh-frozen human head and a whole-body cadaver using clinical dose rates. Scans were repeated using the EID and identical parameters, and qualitative side-by-side comparisons were performed. ResultsFor the same photon fluence, phantom measurements demonstrated a mean increase in CNR of 11%, 23%, 31%, 38% for the PCD system, relative to the EID system, at 80, 100, 120, and 140 kV, respectively. Photon-counting detector CT additionally provided energy-selective imaging, where low- and high-energy images reflected the energy dependence of the iodine signal. Photon-counting detector images of cadaveric anatomy demonstrated decreased beam hardening and calcium blooming in the high-energy bin images and increased contrast in the low-energy bins images relative to the EID images. Threshold-based PCD images were qualitatively deemed equivalent in other aspects. ConclusionsThe evaluated research PCD-CT system was capable of clinical levels of image quality at clinical dose rates. It further provided improved CNR relative to state-of-the-art EID-CT. The energy-selective bin images provide further opportunity for dual-energy and multienergy analyses.
Physics in Medicine and Biology | 2016
Zhicong Yu; Shuai Leng; Zhoubo Li; Cynthia H. McCollough
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.
Journal of Computer Assisted Tomography | 2016
Zhicong Yu; Shuai Leng; Zhoubo Li; Ahmed F. Halaweish; Steffen Kappler; Erik L. Ritman; Cynthia H. McCollough
Purpose A research photon-counting computed tomography (CT) system that consists of an energy-integrating detector (EID) and a photon-counting detector (PCD) was installed in our laboratory. The scanning fields of view of the EID and PCD at the isocenter are 500 and 275 mm, respectively. When objects are larger than the PCD scanning field of view, a data-completion scan (DCS) using the EID subsystem is needed to avoid truncation artifacts in PCD images. The goals of this work were to (1) find the impact of a DCS on noise of PCD images and (2) determine the lowest possible dose for a DCS such that truncation artifacts are negligible in PCD images. Methods First, 2 semianthropomorphic abdomen phantoms were scanned on the PCD subsystem. For each PCD scan, we acquired 1 DCS with the maximum effective mAs and 5 with lower effective mAs values. The PCD image reconstructed using the maximum effective mAs was considered as the reference image, and those using the lower effective mAs as the test images. The PCD image reconstructed without a DCS was considered the baseline image. Each PCD image was assessed in terms of noise and CT number uniformity; the results were compared among the baseline, test, and reference images. Finally, the impact of a DCS on PCD image quality was qualitatively assessed for other body regions using an anthropomorphic torso phantom. Results The DCS had a negligible impact on the noise magnitude in the PCD images. The PCD images with the minimum available dose (CTDIvol < 2 mGy) showed greatly enhanced CT number uniformity compared with the baseline images without noticeable truncation artifacts. Further increasing the effective mAs of a DCS did not yield noticeable improvement in CT number uniformity. Conclusions A DCS using the minimum available dose had negligible effect on image noise and was sufficient to maintain satisfactory CT number uniformity for the PCD scans.
Physics in Medicine and Biology | 2011
Zhicong Yu; Adam Wunderlich; Günter Lauritsch; Frédéric Noo
Cone-beam imaging with C-arm systems has become a valuable tool in interventional radiology. Currently, a simple circular trajectory is used, but future applications should use more sophisticated source trajectories, not only to avoid cone-beam artifacts but also to allow extended volume imaging. One attractive strategy to achieve these two goals is to use a source trajectory that consists of two parallel circular arcs connected by a line segment, possibly with repetition. In this work, we address the question of R-line coverage for such a trajectory. More specifically, we examine to what extent R-lines for such a trajectory cover a central cylindrical region of interest (ROI). An R-line is a line segment connecting any two points on the source trajectory. Knowledge of R-line coverage is crucial because a general theory for theoretically exact and stable image reconstruction from axially truncated data is only known for the points in the scanned object that lie on R-lines. Our analysis starts by examining the R-line coverage for the elemental trajectories consisting of (i) two parallel circular arcs and (ii) a circular arc connected orthogonally to a line segment. Next, we utilize our understanding of the R-lines for the aforementioned elemental trajectories to determine the R-line coverage for the trajectory consisting of two parallel circular arcs connected by a tightly fit line segment. For this trajectory, we find that the R-line coverage is insufficient to completely cover any central ROI. Because extension of the line segment beyond the circular arcs helps to increase the R-line coverage, we subsequently propose a trajectory composed of two parallel circular arcs connected by an extended line. We show that the R-lines for this trajectory can fully cover a central ROI if the line extension is long enough. Our presentation includes a formula for the minimum line extension needed to achieve full R-line coverage of an ROI with a specified size, and also includes a preliminary study on the required detector size, showing that the R-lines added by the line extension are not constraining.
Journal of medical imaging | 2016
Shuai Leng; Zhicong Yu; Ahmed F. Halaweish; Steffen Kappler; K. Hahn; Andre Henning; Zhoubo Li; John I. Lane; David L. Levin; Steven M. Jorgensen; Erik L. Ritman; Cynthia H. McCollough
Abstract. An ultrahigh-resolution (UHR) data collection mode was enabled on a whole-body, research photon counting detector (PCD) computed tomography system. In this mode, 64 rows of 0.45 mm×0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm×0.25 mm at the isocenter. Spatial resolution and image noise were quantitatively assessed for the UHR PCD scan mode, as well as for a commercially available UHR scan mode that uses an energy-integrating detector (EID) and a set of comb filters to decrease the effective detector size. Images of an anthropomorphic lung phantom, cadaveric swine lung, swine heart specimen, and cadaveric human temporal bone were qualitatively assessed. Nearly equivalent spatial resolution was demonstrated by the modulation transfer function measurements: 15.3 and 20.3 lp/cm spatial frequencies were achieved at 10% and 2% modulation, respectively, for the PCD system and 14.2 and 18.6 lp/cm for the EID system. Noise was 29% lower in the PCD UHR images compared to the EID UHR images, representing a potential dose savings of 50% for equivalent image noise. PCD UHR images from the anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures.
IEEE Transactions on Medical Imaging | 2015
Zhicong Yu; Andreas K. Maier; Günter Lauritsch; Florian Vogt; Manfred Schönborn; Christoph Köhler; Joachim Hornegger; Frédéric Noo
C-arm computed tomography (CT) is an innovative technique that enables a C-arm system to generate 3-D images from a set of 2-D X-ray projections. This technique can reduce treatment-related complications and may improve interventional efficacy and safety. However, state-of-the-art C-arm systems rely on a circular short scan for data acquisition, which limits coverage in the axial direction. This limitation was reported as a problem in hepatic vascular interventions. To solve this problem, as well as to further extend the value of C-arm CT, axially extended-volume C-arm CT is needed. For example, such an extension would enable imaging the full aorta, the peripheral arteries or the spine in the interventional room, which is currently not feasible. In this paper, we demonstrate that performing long object imaging using a reverse helix is feasible in the interventional room. This demonstration involved developing a novel calibration method, assessing geometric repeatability, implementing a reconstruction method that applies to real reverse helical data, and quantitatively evaluating image quality. Our results show that: 1) the reverse helical trajectory can be implemented and reliably repeated on a multiaxis C-arm system; and 2) a long volume can be reconstructed with satisfactory image quality using reverse helical data.
Proceedings of SPIE | 2012
Zhicong Yu; Frédéric Noo; Günter Lauritsch; Joachim Hornegger
Over the last decade, significant progress has been made in terms of treatment of diseases using minimallyinvasive procedures. This progress was facilitated through multiple refinements of the imaging capabilities of C-arm systems in the interventional room, and more sophisticated procedures may become feasible by further refining the performance of these systems. Our primary focus is to eliminate two strong limitations of the current circular cone-beam imaging approach: cone-beam artifacts and limited extent of the volume covered in the direction of the patient bed. To solve this problem, we seek a source trajectory that (i) is complete in terms of Tuys condition, (ii) can be periodically-repeated without discontinuities to allow long-object imaging, (iii) is practical, and (iv) offers full R-line coverage (an R-line is a line that connects any two source positions). A trajectory that satisfies all of our constraint is the Arc-Extended-Line-Arc(AELA) trajectory. Unfortunately, this trajectory does not allow smooth, continuous scanning at reasonable dose. In this work, we propose a new data acquisition geometry: the Ellipse-Line-Ellipse (ELE) trajectory. This geometry satisfies all of our constraints along with the attractive feature that smooth, continuous scanning at reasonable dose is enabled.
ieee nuclear science symposium | 2011
Zhicong Yu; Frédéric Noo; Günter Lauritsch; Joachim Hornegger
For emergency cases in the interventional room, 3D long-object cone-beam(CB) imaging using a C-arm system could save valuable time and reduce risks to the patient by avoiding the traditionally-used CT scan, and thus could potentially be a crucial tool for patient health. To accomplish such a task, the reverse helix is an attractive trajectory, however theoretically-exact and stable (TES) reconstruction with a reverse helix is challenging. Two TES solutions are available, but both of them come with a heavy computational load and some issues in terms of image quality. This work proposes three new approximate reconstruction algorithms for the reverse helix that are stable and efficient, and thus practical. Though not exact, reconstruction results obtained from all three methods appear acceptable.