Zhihua Jiang
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhihua Jiang.
Journal of Lipids | 2011
M.V. Dodson; P. S. Mir; Gary J. Hausman; Le Luo Guan; Min Du; Zhihua Jiang; Melinda E. Fernyhough; Werner G. Bergen
Obesity and metabolic syndromes are examples whereby excess energy consumption and energy flux disruptions are causative agents of increased fatness. Because other, as yet elucidated, cellular factors may be involved and because potential treatments of these metabolic problems involve systemic agents that are not adipose depot-specific in their actions, should we be thinking of adipose depot-specific (cellular) treatments for these problems? For sure, whether treating obesity or metabolic syndrome, the characteristics of all adipose depot-specific adipocytes and stromal vascular cells should be considered. The focus of this paper is to begin to align metabolic dysfunctions with specific characteristics of adipocytes.
Cellular and Molecular Life Sciences | 2016
Shengjuan Wei; Min Du; Zhihua Jiang; Gary J. Hausman; Lifan Zhang; Michael V. Dodson
Long noncoding RNAs (lncRNAs) are an emerging class of regulators involved in a myriad of biological processes. Recent studies have revealed that many lncRNAs play pivotal roles in regulating adipocyte development. Due to the prevalence of obesity and the serious effects of adiposity on human health and society development, it is necessary to summarize functions and recent advances of lncRNAs in adipogenesis. In this review, we highlight functional lncRNAs contributed to the regulation of adipogenesis, discussing their potential use as therapeutic targets to combat human obesity.
International Journal of Biological Sciences | 2016
Zhihua Jiang; Hongyang Wang; Jennifer J. Michal; Xiang Zhou; Bang Liu; Leah C. Solberg Woods; Rita A. Fuchs
Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.
Cellular and Molecular Life Sciences | 2015
Zhihua Jiang; Xiang Zhou; Rui Li; Jennifer J. Michal; Shuwen Zhang; Michael V. Dodson; Zhiwu Zhang; Richard M. Harland
Whole transcriptome analysis plays an essential role in deciphering genome structure and function, identifying genetic networks underlying cellular, physiological, biochemical and biological systems and establishing molecular biomarkers that respond to diseases, pathogens and environmental challenges. Here, we review transcriptome analysis methods and technologies that have been used to conduct whole transcriptome shotgun sequencing or whole transcriptome tag/target sequencing analyses. We focus on how adaptors/linkers are added to both 5′ and 3′ ends of mRNA molecules for cloning or PCR amplification before sequencing. Challenges and potential solutions are also discussed. In brief, next generation sequencing platforms have accelerated releases of the large amounts of gene expression data. It is now time for the genome research community to assemble whole transcriptomes of all species and collect signature targets for each gene/transcript, and thus use known genes/transcripts to determine known transcriptomes directly in the near future.
International Journal of Biological Sciences | 2014
Lifan Zhang; Xiang Zhou; Jennifer J. Michal; Bo Ding; Rui Li; Zhihua Jiang
Birth weight is an economically important trait in pig production because it directly impacts piglet growth and survival rate. In the present study, we performed a genome wide survey of candidate genes and pathways associated with individual birth weight (IBW) using the Illumina PorcineSNP60 BeadChip on 24 high (HEBV) and 24 low estimated breeding value (LEBV) animals. These animals were selected from a reference population of 522 individuals produced by three sires and six dam lines, which were crossbreds with multiple breeds. After quality-control, 43,257 SNPs (single nucleotide polymorphisms), including 42,243 autosomal SNPs and 1,014 SNPs on chromosome X, were used in the data analysis. A total of 27 differentially selected regions (DSRs), including 1 on Sus scrofa chromosome 1 (SSC1), 1 on SSC4, 2 on SSC5, 4 on SSC6, 2 on SSC7, 5 on SSC8, 3 on SSC9, 1 on SSC14, 3 on SSC18, and 5 on SSCX, were identified to show the genome wide separations between the HEBV and LEBV groups for IBW in piglets. A DSR with the most number of significant SNPs (including 7 top 0.1% and 31 top 5% SNPs) was located on SSC6, while another DSR with the largest genetic differences in FST was found on SSC18. These regions harbor known functionally important genes involved in growth and development, such as TNFRSF9 (tumor necrosis factor receptor superfamily member 9), CA6 (carbonic anhydrase VI) and MDFIC (MyoD family inhibitor domain containing). A DSR rich in imprinting genes appeared on SSC9, which included PEG10 (paternally expressed 10), SGCE (sarcoglycan, epsilon), PPP1R9A (protein phosphatase 1, regulatory subunit 9A) and ASB4 (ankyrin repeat and SOCS box containing 4). More importantly, our present study provided evidence to support six quantitative trait loci (QTL) regions for pig birth weight, six QTL regions for average birth weight (ABW) and three QTL regions for litter birth weight (LBW) reported previously by other groups. Furthermore, gene ontology analysis with 183 genes harbored in these 27 DSRs suggested that protein, metal, ion and ATP binding, viral process and innate immune response present important pathways for deciphering their roles in fetal growth or development. Overall, our study provides useful information on candidate genes and pathways for regulating birth weight in piglets, thus improving our understanding of the genetic mechanisms involved in porcine embryonic or fetal development.
PLOS ONE | 2010
Tyler F. Daniels; Xiao-Lin Wu; Zengxiang Pan; Jennifer J. Michal; Raymond W. Wright; Karen Killinger; M. D. MacNeil; Zhihua Jiang
In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x Limousin reference population, including 6 F1 bulls, 113 F1 dams, and 246 F2 progeny. A total of 37 amplicons were used to screen single nucleotide polymorphisms (SNPs) on 6 F1 bulls. Among 36 SNPs detected in 11 of these 13 genes, 19 were selected for genotyping by the Sequenom assay design on all F2 progeny. Single-marker analysis revealed seven SNPs in ATP binding cassette A1, apolipoproteins A1, B and E, phospholipid transfer protein and paraoxinase 1 genes significantly associated with nine phenotypes (P<0.05). Previously, we reported genetic networks associated with 19 complex phenotypes based on a total of 138 genetic polymorphisms derived from 71 known functional genes. Therefore, after Bonferroni correction, these significant (adjusted P<0.05) and suggestive (adjusted P<0.10) associations were then used to identify genetic networks related to the RCT pathway. Multiple-marker analysis suggested possible genetic networks involving the RCT pathway for kidney-pelvic-heart fat percentage, rib-eye area, and subcutaneous fat depth phenotypes with markers derived from paraoxinase 1, apolipoproteins A1 and E, respectively. The present study confirmed that genes involved in cholesterol homeostasis are useful targets for investigating obesity in humans as well as for improving meat quality phenotypes in a livestock production.
Biology of Reproduction | 2003
Zhihua Jiang; Ming Zhang; Vaughn D. Wasem; Jennifer J. Michal; Hao Zhang; Raymond W. Wright
Abstract A total of 98 898 expressed sequence tags (ESTs) derived from embryos and reproductive tissues in pigs were identified in the GenBank “est_others” database. Pig embryos were collected at 11, 12, 13, 14, 15, 20, 30, and 45 days after gestation. The reproductive tissues were sampled from testis, ovary, endometrium, hypothalamus, anterior pituitary, uterus, and placenta. A gene-oriented approach was developed to annotate these porcine EST sequences to census the genes expressed from these sources. Of the 33 308 mRNA sequences from the human genes used as references (data accessed on 1 November 2002), 9410 had the porcine EST homologs expressed in embryos and 11 795 had the EST homologs expressed in reproductive tissues. The entire genome contributes at least 28.3% of its genes to embryo development and 35.4% of its genes to reproduction. Using the EST entry numbers as indicators of gene expression, we determined that the gene expression patterns differ significantly between embryos and reproductive tissues in pigs. The basic active genes were identified for each source, but most of them are not coexpressed abundantly. Few genes were expressed on the Y chromosome (P < 0.01), but they may represent counterparts of the double-dose genes that remain active in an inactivated X chromosome in females but are needed for proper development and growth. The census provides a panel of transcripts in a broad sense that can be used as targets to study the mechanisms involved in embryo development and reproduction in pigs and other mammals, including humans.
Domestic Animal Endocrinology | 2016
Wenxing Sun; Michael V. Dodson; Zhihua Jiang; Shigang Yu; Weiwei Chu; Jie Chen
This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P < 0.05) inhibited the expression of the adipogenic marker genes CCAAT/enhancer-binding protein β, CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty acid-binding protein, and adiponectin. Myostatin also significantly (P < 0.05) reduced the release of glycerol and decreased both adipose triglyceride lipase and hormone-sensitive lipase expression in intramuscular adipocytes. Our study suggests that myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis.
Genetics | 2016
Xiang Zhou; Rui Li; Jennifer J. Michal; Xiao-Lin Wu; Zhongzhen Liu; Hui Zhao; Yin Xia; Weiwei Du; Mark R. Wildung; Derek J. Pouchnik; Richard M. Harland; Zhihua Jiang
Construction of next-generation sequencing (NGS) libraries involves RNA manipulation, which often creates noisy, biased, and artifactual data that contribute to errors in transcriptome analysis. In this study, a total of 19 whole transcriptome termini site sequencing (WTTS-seq) and seven RNA sequencing (RNA-seq) libraries were prepared from Xenopus tropicalis adult and embryo samples to determine the most effective library preparation method to maximize transcriptomics investigation. We strongly suggest that appropriate primers/adaptors are designed to inhibit amplification detours and that PCR overamplification is minimized to maximize transcriptome coverage. Furthermore, genome annotation must be improved so that missing data can be recovered. In addition, a complete understanding of sequencing platforms is critical to limit the formation of false-positive results. Technically, the WTTS-seq method enriches both poly(A)+ RNA and complementary DNA, adds 5′- and 3′-adaptors in one step, pursues strand sequencing and mapping, and profiles both gene expression and alternative polyadenylation (APA). Although RNA-seq is cost prohibitive, tends to produce false-positive results, and fails to detect APA diversity and dynamics, its combination with WTTS-seq is necessary to validate transcriptome-wide APA.
Journal of Animal Science | 2015
Shengjuan Wei; Xing Fu; Xingwei Liang; Mei-Jun Zhu; Zhihua Jiang; Steven M. Parish; M.V. Dodson; Zan Ls; Min Du
Japanese Wagyu cattle are well known for their extremely high marbling and lower subcutaneous adipose tissue compared with Angus cattle. However, mechanisms for differences in adipose deposition are unknown. The objective of this paper was to evaluate breed differences in the structure of subcutaneous adipose tissue, adipogenesis, and mitogenesis of stromal vascular (SV) cells between Wagyu and Angus cattle. Subcutaneous biopsy samples were obtained from 5 Wagyu (BW = 302 ± 9 kg) and 5 Angus (BW = 398 ± 12 kg) heifers at 12 mo of age, and samples were divided into 3 pieces for histological examination, biochemical analysis, and harvest of SV cells. Adipogenesis of SV cells was assessed by the expression of adipogenic markers and Oil Red-O staining, while mitogenesis was evaluated by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium dromide) test, phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB; AKT). Based on histological analysis, Wagyu had larger adipocytes compared with Angus. At the tissue level, protein expression of peroxisome proliferator-activated receptor γ (PPARG) in Wagyu was much lower compared with that of Angus. Similarly, a lower mRNA expression of PPARG was found in Wagyu SV cells. No significant difference was observed for the zinc finger protein 423 (ZNF423) expression between Wagyu and Angus. As assessed by Oil Red-O staining, Wagyu SV cells possessed a notable trend of lower adipogenic capability. Interestingly, higher mitogenic ability was discovered in Wagyu SV cells, which was associated with an elevated phosphorylation of ERK1/2. There was no difference in AKT phosphorylation of SV cells between Wagyu and Angus. Moreover, exogenous fibroblast growth factor 2 (FGF2) enhanced mitogenesis and ERK1/2 phosphorylation of SV cells to a greater degree in Angus compared with that in Wagyu. Expression of transforming growth factor β 3 (TGFB3) and bone morphogenetic protein 2 (BMP2) in Wagyu SV cells was lower than that of Angus, providing potential clues for breed differences on proliferation of SV cells in these two cattle breeds. The results of this study suggest that subcutaneous adipose-derived SV cells of Wagyu possess a lower trend of adipogenesis but higher mitogenesis compared with those of Angus.