Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael V. Dodson is active.

Publication


Featured researches published by Michael V. Dodson.


Journal of Animal Science | 2009

Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals.

Gary J. Hausman; Michael V. Dodson; Kolapo M. Ajuwon; M. J. Azain; K. M. Barnes; Le Luo Guan; Zhihua Jiang; S. P. Poulos; R. D. Sainz; Stephen B. Smith; M. Spurlock; J. Novakofski; Melinda E. Fernyhough; W. G. Bergen

The quality and value of the carcass in domestic meat animals are reflected in its protein and fat content. Preadipocytes and adipocytes are important in establishing the overall fatness of a carcass, as well as being the main contributors to the marbling component needed for consumer preference of meat products. Although some fat accumulation is essential, any excess fat that is deposited into adipose depots other than the marbling fraction is energetically unfavorable and reduces efficiency of production. Hence, this review is focused on current knowledge about the biology and regulation of the important cells of adipose tissue: preadipocytes and adipocytes.


Experimental Biology and Medicine | 2010

Cell line models for differentiation: preadipocytes and adipocytes

Sylvia P Poulos; Michael V. Dodson; Gary J. Hausman

In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation, adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1 cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines. Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our understanding of adipocyte biology.


Cell Biology International | 2000

Satellite cell regulation following myotrauma caused by resistance exercise.

Janet L. Vierck; Becky A. O'Reilly; Kim L. Hossner; Jose Antonio; Katherine M. Byrne; Luke Bucci; Michael V. Dodson

It is generally accepted that the primary mechanisms governing skeletal muscle hypertrophy are satellite cell activation, proliferation, and differentiation. Specific growth factors and hormones modulate satellite cell activity during normal muscle growth, but as a consequence of resistance exercise additional regulators may stimulate satellite cells to contribute to gains in myofiber size and number. Present knowledge of the regulation of the cellular, biochemical and molecular events accompanying skeletal muscle hypertrophy after resistance exercise is incomplete. We propose that resistance exercise may induce satellite cells to become responsive to cytokines from the immune system and to circulating hormones and growth factors. The purpose of this paper is to review the role of satellite cells and growth factors in skeletal muscle hypertrophy that follows resistance exercise.


International Journal of Obesity | 2015

Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1

Songbo Wang; Xingwei Liang; Qiyuan Yang; Xing Fu; Carl J. Rogers; Mei-Jun Zhu; Buel D. Rodgers; Qingyan Jiang; Michael V. Dodson; Min Du

Objective:Development of brown-like/beige adipocytes in white adipose tissue (WAT) helps to reduce obesity. Thus we investigated the effects of resveratrol, a dietary polyphenol capable of preventing obesity and related complications in humans and animal models, on brown-like adipocyte formation in inguinal WAT (iWAT).Methods:CD1 female mice (5-month old) were fed a high-fat diet with/without 0.1% resveratrol. In addition, primary stromal vascular cells separated from iWAT were subjected to resveratrol treatment. Markers of brown-like (beige) adipogenesis were measured and the involvement of AMP-activated protein kinase (AMPK) α1 was assessed using conditional knockout.Results:Resveratrol significantly increased mRNA and/or protein expression of brown adipocyte markers, including uncoupling protein 1 (UCP1), PR domain-containing 16, cell death-inducing DFFA-like effector A, elongation of very long-chain fatty acids protein 3, peroxisome proliferator-activated receptor-γ coactivator 1α, cytochrome c and pyruvate dehydrogenase, in differentiated iWAT stromal vascular cells (SVCs), suggesting that resveratrol induced brown-like adipocyte formation in vitro. Concomitantly, resveratrol markedly enhanced AMPKα1 phosphorylation and differentiated SVC oxygen consumption. Such changes were absent in cells lacking AMPKα1, showing that AMPKα1 is a critical mediator of resveratrol action. Resveratrol also induced beige adipogenesis in vivo along with the appearance of multiocular adipocytes, increased UCP1 expression and enhanced fatty acid oxidation.Conclusions:Resveratrol induces brown-like adipocyte formation in iWAT via AMPKα1 activation and suggest that its beneficial antiobesity effects may be partly due to the browning of WAT and, as a consequence, increased oxygen consumption.


BMC Molecular Biology | 2010

Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

Weiwu Jin; Michael V. Dodson; Stephen S. Moore; J. A. Basarab; Le Luo Guan

BackgroundMicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle.ResultsThe expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thickness were compared using qRT-PCR analysis. Eighty-six miRNAs were detectable in all samples, with 42 miRNAs differing among crossbreds (P < 0.05) and 15 miRNAs differentially expressed between tissues with high and low backfat thickness (P < 0.05). The expression levels of 18 miRNAs were correlated with backfat thickness (P < 0.05). The miRNA most differentially expressed and the most strongly associated with backfat thickness was miR-378, with a 1.99-fold increase in high backfat thickness tissues (r = 0.72).ConclusionsMiRNA expression patterns differed significantly in response to host genetic components. Approximately 20% of the miRNAs in this study were identified as being correlated with backfat thickness. This result suggests that miRNAs may play a regulatory role in white adipose tissue development in beef animals.


Experimental Biology and Medicine | 2011

MicroRNA regulation in mammalian adipogenesis.

Josue Moura Romao; Weiwu Jin; Michael V. Dodson; Gary J. Hausman; Stephen S. Moore; Le Luo Guan

Adipogenesis, the complex development from preadipocytes or mesenchymal stem cells to mature adipocytes, is essential for fat formation and metabolism of adipose tissues in mammals. It has been reported to be regulated by hormones and various adipogenic transcription factors which are expressed as a transcriptional cascade promoting adipocyte differentiation, leading to the mature adipocyte phenotype. Recent findings indicate that microRNAs (miRNAs), a family of small RNA molecules of approximately 22 nucleotides in length, are involved in the regulatory network of many biological processes, including cell differentiation, through post-transcriptional regulation of transcription factors and/or other genes. In this review, we focus on the recent understanding of the roles of miRNAs in adipogenesis, including the most recent and relevant findings that support the role of several miRNAs as pro- or antiadipogenic factors regulating adipogenesis in mice, human and cattle to propose the future role of miRNA in adipogenesis of farm animal models.


Medicine and Science in Sports and Exercise | 2003

The effects of ergogenic compounds on myogenic satellite cells.

Janet L. Vierck; Deri L. Icenoggle; Luke Bucci; Michael V. Dodson

PURPOSE A series of studies were conducted in which compounds commonly shown to be ergogenic aids for strength athletes if taken orally were evaluated for their ability to directly induce postnatal muscle stem cell proliferation or differentiation/fusion in vitro. METHODS Compounds tested were creatine monohydrate, creatine pyruvate, L-glutamine, dehydroepiandrosterone (DHEA), androstenedione, Ma Huang (Ephedra sinensis) extract, and Zhi Shi (Citrus aurantium) extract. Dulbeccos modified eagle medium, supplemented with minimal levels of serum and antibiotics, was used as the initial vehicle for the test compounds. Subsequently, a defined treatment medium termed ITTC was used. Satellite cells were exposed to the test compounds for the indicated times and then evaluated by counting mononucleated and multinucleated (fused) cells. RESULTS In serum-containing media, none of the treatment groups displayed increased proliferation over that of the control. However, in the differentiation cultures, 0.10% creatine monohydrate increased differentiation over that of the control cultures. When 0.10% creatine monohydrate was added to defined media formulations, all treatments but one demonstrated increased differentiation over the 0.5% serum control. Time course experiments, which followed the effect of 0.10% creatine monohydrate contained in ITTC defined media over 120 h, suggested that cells exposed to this treatment differentiated earlier and to a greater level than cells exposed to ITTC alone. CONCLUSIONS Creatine in the monohydrate form induced differentiation of myogenic satellite cells. Other agents examined did not increase satellite cell proliferation or differentiation. These results provide initial evidence for a mechanistic understanding of observed effects in vivo of increased muscular size and strength from creatine supplementation.


In Vitro Cellular & Developmental Biology – Animal | 1996

Proliferation and differentiation of progeny of ovine unilocular fat cells (adipofibroblasts)

Janet L. Vierck; J.P. McNamara; Michael V. Dodson

SummaryThe responsiveness of progeny of sheep-derived unilocular fat cells (adipofibroblasts) to dexamethasone, insulin, insulinlike growth factor I (IGF-I), growth hormone (GH), and basic fibroblast growth factor (FGF) was determined in a clonal culture system. Primary cultures of mature adipocytes were obtained from intermuscular adipose tissue (semimembranosus/semitendinosus seam depot) of sheep by ceiling culture techniques. Following degeneration of unilocular fat droplets and re-establishment of fibroblasticlike adipofibroblasts, all adipofibroblasts adhering to upper flask surfaces were collected and isolated away from fibroblasts (which had no multilocular vesicles) by Percoll® gradient centrifugation. Progeny derived from a single adipofibroblast were isolated and tested for the ability to proliferate, differentiate, and accumulate lipids. Stock cultures of adipofibroblasts reached confluence in 5 d and were induced to differentiate from 7 to 9 d with dexamethasone-methyl isobutylxanthine-insulin (DMI). Incubation with insulin, IGF-I, GH, or FGF prior to confluence followed by induction with DMI produced no direct (priming) effect on subsequent differentiation. When substituted individually in place of DMI during the 2 d differentiation/induction period, all factors induced differentiation of cultured adipofibroblasts as determined by lipogenesis (P<.05) and lipoprotein lipase activity (P<.05). Thus, isolated adipofibroblasts from sheep muscle may be induced by hormones and growth factors to display mature adipocyte morphology in cell culture. Further definition of the adipofibroblast culture system may aid in the identification of mechanisms regulating adipocyte development in sheep skeletal muscle, as well as in the study of intercommunication between fat and muscle cells.


Journal of Food Science | 2010

Allied industry approaches to alter intramuscular fat content and composition in beef animals.

Michael V. Dodson; Zhihua Jiang; Jie Chen; Gary J. Hausman; Le Luo Guan; J. Novakofski; David P. Thompson; Carol L. Lorenzen; Melinda E. Fernyhough; P. S. Mir; James M. Reecy

Biochemical and biophysical research tools are used to define the developmental dynamics of numerous cell lineages from a variety of tissues relevant to meat quality. With respect to the adipose cell lineage, much of our present understanding of adipogenesis and lipid metabolism was initially determined through the use of these methods, even though the in vitro or molecular environments are far removed from the tissues of meat animals. This concise review focuses on recent cellular and molecular biology-related research with adipocytes, and how the research might be extended to the endpoint of altering red meat quality. Moreover, economic and policy impacts of such in animal production regimens is discussed. These issues are important, not only with respect to palatability, but also to offer enhanced health benefits to the consumer by altering content of bioactive components in adipocytes.


Journal of Genomics | 2013

Developmental programming of fetal skeletal muscle and adipose tissue development.

Xu Yan; Mei-Jun Zhu; Michael V. Dodson; Min Du

All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.

Collaboration


Dive into the Michael V. Dodson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhihua Jiang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Janet L. Vierck

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Du

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengjuan Wei

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jie Chen

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine M. Byrne

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge