Zhijian Jake Tu
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhijian Jake Tu.
Science | 2007
Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
PLOS Biology | 2010
Rami A. Dalloul; Julie A Long; Aleksey V. Zimin; Luqman Aslam; Kathryn Beal; Le Ann Blomberg; Pascal Bouffard; David W. Burt; Oswald Crasta; R.P.M.A. Crooijmans; Kristal L. Cooper; Roger A. Coulombe; Supriyo De; Mary E. Delany; Jerry B. Dodgson; Jennifer J Dong; Clive Evans; Karin M. Frederickson; Paul Flicek; Liliana Florea; Otto Folkerts; M.A.M. Groenen; Tim Harkins; Javier Herrero; Steve Hoffmann; Hendrik-Jan Megens; Andrew Jiang; Pieter J. de Jong; Peter K. Kaiser; Heebal Kim
The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome.
Science | 2010
Peter Arensburger; Karine Megy; Robert M. Waterhouse; Jenica Abrudan; Paolo Amedeo; Beatriz García Antelo; Lyric C. Bartholomay; Shelby Bidwell; Elisabet Caler; Francisco Camara; Corey L. Campbell; Kathryn S. Campbell; Claudio Casola; Marta T. Castro; Ishwar Chandramouliswaran; Sinéad B. Chapman; Scott Christley; Javier Costas; Eric Eisenstadt; Cédric Feschotte; Claire M. Fraser-Liggett; Roderic Guigó; Brian J. Haas; Martin Hammond; Bill S. Hansson; Janet Hemingway; Sharon R. Hill; Clint Howarth; Rickard Ignell; Ryan C. Kennedy
Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Xiao-Guang Chen; Xuanting Jiang; Jinbao Gu; Meng Xu; Yang Wu; Yuhua Deng; Chi Zhang; Mariangela Bonizzoni; Wannes Dermauw; John Vontas; Peter Armbruster; Xin Huang; Yulan Yang; Hao Zhang; Weiming He; Hong-Juan Peng; Yongfeng Liu; Kun Wu; Jiahua Chen; Manolis Lirakis; Pantelis Topalis; Thomas Van Leeuwen; Andrew Brantley Hall; Xiaofang Jiang; Chevon N. Thorpe; Rachel Lockridge Mueller; Cheng Sun; Robert M. Waterhouse; Guiyun Yan; Zhijian Jake Tu
Significance Aedes albopictus is a highly adaptive species that thrives worldwide in tropical and temperate zones. From its origin in Asia, it has established itself on every continent except Antarctica. This expansion, coupled with its ability to vector the epidemic human diseases dengue and Chikungunya fevers, make it a significant global public health threat. A complete genome sequence and transcriptome data were obtained for the Ae. albopictus Foshan strain, a colony derived from mosquitoes from its historical origin. The large genome (1,967 Mb) comprises an abundance of repetitive DNA classes and expansions of the numbers of gene family members involved in insecticide resistance, diapause, sex determination, immunity, and olfaction. This large genome repertory and plasticity may contribute to its success as an invasive species. The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Andrew Brantley Hall; Philippos-Aris Papathanos; Atashi Sharma; Changde Cheng; Omar S. Akbari; Lauren A. Assour; Nicholas H. Bergman; Alessia Cagnetti; Andrea Crisanti; Tania Dottorini; Elisa Fiorentini; Roberto Galizi; Jonathan Hnath; Xiaofang Jiang; Sergey Koren; Tony Nolan; Diane Radune; Maria V. Sharakhova; Aaron Steele; Vladimir A. Timoshevskiy; Nikolai Windbichler; Simo Zhang; Matthew W. Hahn; Adam M. Phillippy; Scott J. Emrich; Igor V. Sharakhov; Zhijian Jake Tu; Nora J. Besansky
Significance Interest in male mosquitoes has been motivated by the potential to develop novel vector control strategies, exploiting the fact that males do not feed on blood or transmit diseases, such as malaria. However, genetic studies of male Anopheles mosquitoes have been impeded by the lack of molecular characterization of the Y chromosome. Here we show that the Anopheles gambiae Y chromosome contains a very small repertoire of genes, with massively amplified tandem arrays of a small number of satellites and transposable elements constituting the vast majority of the sequence. These genes and repeats evolve rapidly, bringing about remodeling of the Y, even among closely related species. Our study provides a long-awaited foundation for studying mosquito Y chromosome biology and evolution. Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.
Genome Biology and Evolution | 2015
Xiaofang Jiang; James K. Biedler; Yumin Qi; Andrew Brantley Hall; Zhijian Jake Tu
Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution.
Proceedings of the National Academy of Sciences of the United States of America | 2016
X-G Chen; Xiaofang Jiang; Jinbao Gu; M Xu; Yang Wu; Yuhua Deng; Chi Zhang; Mariangela Bonizzoni; Wannes Dermauw; John Vontas; Peter Armbruster; Xin Huang; Yulan Yang; Hong-Quan Zhang; W He; Hong-Juan Peng; Y Liu; Kun Wu; Jihua Chen; Manolis Lirakis; Pantelis Topalis; T Van Leeuwen; Andrew Brantley Hall; Chevon N. Thorpe; Rachel Lockridge Mueller; Cheng Sun; Robert M. Waterhouse; Guiyun Yan; Zhijian Jake Tu; X Fang
Author(s): Chen, XG; Jiang, X; Gu, J; Xu, M; Wu, Y; Deng, Y; Zhang, C; Bonizzoni, M; Dermauw, W; Vontas, J; Armbruster, P; Huang, X; Yang, Y; Zhang, H; He, W; Peng, H; Liu, Y; Wu, K; Chen, J; Lirakis, M; Topalis, P; Van Leeuwen, T; Hall, AB; Jiang, X; Thorpe, C; Mueller, RL; Sun, C; Waterhouse, RM; Yan, G; Tu, ZJ; Fang, X; James, AA
pp. 949-955. (2008) | 2008
Stephen Richards; Richard A. Gibbs; George M. Weinstock; Susan J. Brown; Robin E. Denell; Richard W. Beeman; Richard A.L. Gibbs; Gregor Bucher; Markus Friedrich; Cornelis J. P. Grimmelikhuijzen; Martin Klingler; Marcé D. Lorenzen; Siegfried Roth; Reinhard Schröder; Diethard Tautz; Evgeny M. Zdobnov; Donna M. Muzny; Tony Attaway; Stephanie Bell; Christian Buhay; Mimi N. Chandrabose; Dean Chavez; Kp Clerk-Blankenburg; Andrew Cree; Marvin Diep Dao; Clay Davis; Joseph Chacko; Huyen Dinh; Shannon Dugan-Rocha; Gerald Fowler