Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiqin Liu is active.

Publication


Featured researches published by Zhiqin Liu.


Plant Cell and Environment | 2013

CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection.

Fengfeng Dang; Yuna Wang; Lu Yu; Thomas Eulgem; Yan Lai; Zhiqin Liu; Xu Wang; Ailian Qiu; Ting-Xiu Zhang; Jing Lin; Yansheng Chen; Deyi Guan; Hanyang Cai; Shaoliang Mou; Shuilin He

WRKY proteins form a large family of plant transcription factors implicated in the modulation of numerous biological processes, such as growth, development and responses to various environmental stresses. However, the roles of the majority WRKY family members, especially in non-model plants, remain poorly understood. We identified CaWRKY40 from pepper. Transient expression in onion epidermal cells showed that CaWRKY40 can be targeted to nuclei and activates expression of a W-box-containing reporter gene. CaWRKY40 transcripts are induced in pepper by Ralstonia solanacearum and heat shock. To assess roles of CaWRKY40 in plant stress responses we performed gain- and loss-of-function experiments. Overexpression of CaWRKY40 enhanced resistance to R. solanacearum and tolerance to heat shock in tobacco. In contrast, silencing of CaWRKY40 enhanced susceptibility to R. solanacearum and impaired thermotolerance in pepper. Consistent with its role in multiple stress responses, we found CaWRKY40 transcripts to be induced by signalling mechanisms mediated by the stress hormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Overexpression of CaWRKY40 in tobacco modified the expression of hypersensitive response (HR)-associated and pathogenesis-related genes. Collectively, our results suggest that CaWRKY40 orthologs are regulated by SA, JA and ET signalling and coordinate responses to R. solanacearum attacks and heat stress in pepper and tobacco.


Molecular Plant Pathology | 2013

CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection

Yuna Wang; Fengfeng Dang; Zhiqin Liu; Xu Wang; Thomas Eulgem; Yan Lai; Lu Yu; Jianju She; Youliang Shi; Jinhui Lin; Chengcong Chen; Deyi Guan; Ailian Qiu; Shuilin He

WRKY transcription factors are encoded by large gene families across the plant kingdom. So far, their biological and molecular functions in nonmodel plants, including pepper (Capsicum annuum) and other Solanaceae, remain poorly understood. Here, we report on the functional characterization of a new group I WRKY protein from pepper, termed CaWRKY58. Our data indicate that CaWRKY58 can be localized to the nucleus and can activate the transcription of the reporter β-glucuronidase (GUS) gene driven by the 35S core promoter with two copies of the W-box in its proximal upstream region. In pepper plants infected with the bacterial pathogen Ralstonia solanacearum, CaWRKY58 transcript levels showed a biphasic response, manifested in an early/transient down-regulation and late up-regulation. CaWRKY58 transcripts were suppressed by treatment with methyl jasmonate and abscisic acid. Tobacco plants overexpressing CaWRKY58 did not show any obvious morphological phenotypes, but exhibited disease symptoms of greater severity than did wild-type plants. The enhanced susceptibility of CaWRKY58-overexpressing tobacco plants correlated with the decreased expression of hypersensitive response marker genes, as well as various defence-associated genes. Consistently, CaWRKY58 pepper plants silenced by virus-induced gene silencing (VIGS) displayed enhanced resistance to the highly virulent R. solanacearum strain FJC100301, and this was correlated with enhanced transcripts of defence-related pepper genes. Our results suggest that CaWRKY58 acts as a transcriptional activator of negative regulators in the resistance of pepper to R. solanacearum infection.


Physiologia Plantarum | 2014

Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection.

Fengfeng Dang; Yuna Wang; Jianju She; Yufen Lei; Zhiqin Liu; Thomas Eulgem; Yan Lai; Jing Lin; Lu Yu; Dan Lei; Deyi Guan; Xia Li; Qian Yuan; Shuilin He

WRKY proteins are encoded by a large gene family and are linked to many biological processes across a range of plant species. The functions and underlying mechanisms of WRKY proteins have been investigated primarily in model plants such as Arabidopsis and rice. The roles of these transcription factors in non-model plants, including pepper and other Solanaceae, are poorly understood. Here, we characterize the expression and function of a subgroup IIe WRKY protein from pepper (Capsicum annuum), denoted as CaWRKY27. The protein localized to nuclei and activated the transcription of a reporter GUS gene construct driven by the 35S promoter that contained two copies of the W-box in its proximal upstream region. Inoculation of pepper cultivars with Ralstonia solanacearum induced the expression of CaWRKY27 transcript in 76a, a bacterial wilt-resistant pepper cultivar, whereas it downregulated the expression of CaWRKY27 transcript in Gui-1-3, a bacterial wilt-susceptible pepper cultivar. CaWRKY27 transcript levels were also increased by treatments with salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH). Transgenic tobacco plants overexpressing CaWRKY27 exhibited resistance to R. solanacearum infection compared to that of wild-type plants. This resistance was coupled with increased transcript levels in a number of marker genes, including hypersensitive response genes, and SA-, JA- and ET-associated genes. By contrast, virus-induced gene silencing (VIGS) of CaWRKY27 increased the susceptibility of pepper plants to R. solanacearum infection. These results suggest that CaWRKY27 acts as a positive regulator in tobacco resistance responses to R. solanacearum infection through modulation of SA-, JA- and ET-mediated signaling pathways.


Plant Physiology and Biochemistry | 2013

Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco

Yan Lai; Fengfeng Dang; Jing Lin; Lu Yu; Youliang Shi; Yuhua Xiao; Mukun Huang; Jinhui Lin; Chengcong Chen; Aihua Qi; Zhiqin Liu; Deyi Guan; Shaoliang Mou; Ailian Qiu; Shuilin He

Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H(2)O(2)). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H(2)O(2) and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms.


Journal of Experimental Botany | 2015

SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1

Zhiqin Liu; Ailian Qiu; Lanping Shi; Jinsen Cai; Xueying Huang; Sheng Yang; Bo Wang; Lei Shen; Mukun Huang; Shaoliang Mou; Xiao-Ling Ma; Lin Lin; Jiayu Wen; Qian Tang; Wei Shi; Deyi Guan; Yan Lai; Shuilin He

Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.


PLOS ONE | 2013

Functional Analysis and Expressional Characterization of Rice Ankyrin Repeat-Containing Protein, OsPIANK1, in Basal Defense against Magnaporthe oryzae Attack

Shaoliang Mou; Zhiqin Liu; Deyi Guan; Ailian Qiu; Yan Lai; Shuilin He

The ankyrin repeat-containing protein gene OsPIANK1 (AK068021) in rice (Oryza sativa L.) was previously shown to be upregulated following infection with the rice leaf blight pathogen Xanthomonas oryzae pv oryzae (Xoo). In this study, we further characterized the role of OsPIANK1 in basal defense against Magnaporthe oryzae (M.oryzae) by 5′ deletion analysis of its promoter and overexpression of the gene. The promoter of OsPIANK1 with 1,985 bps in length was sufficient to induce the OsPIANK1 response to inoculation with M.oryzae and to exogenous application of methyl jasmonate (MeJA) or salicylic acid (SA), but not to exogenous application of abscisic acid (ABA). A TCA-element present in the region between −563 bp and −249 bp may be responsible for the OsPIANK1 response to both M.oryzae infection and exogenous SA application. The JERE box, CGTCA-box, and two MYB binding sites locating in the region between −1985 bp and −907 bp may be responsible for the response of OsPIANK1 to exogenous MeJA. OsPIANK1 expression was upregulated after inoculation with M.oryzae and after treatment with exogenous SA and MeJA. Overexpression of OsPIANK1 enhanced resistance of rice to M.oryzae, although it did not confer complete resistance. The enhanced resistance to M.oryzae was accompanied by enhanced transcriptional expression of SA- and JA-dependent genes such as NH1, WKRY13, PAL, AOS2, PR1b, and PR5. This evidence suggests that OsPIANK1 acted as a positive regulator in rice basal defense mediated by SA- and JA-signaling pathways.


Frontiers in Plant Science | 2015

Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

Zhiqin Liu; Lanping Shi; Qian Tang; Lei Shen; Sheng Yang; Jinsen Cai; Huanxin Yu; Rongzhang Wang; Jiayu Wen; Youquan Lin; Jiong Hu; Cailing Liu; Yangwen Zhang; Shaoliang Mou; Shuilin He

The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.


Journal of Experimental Botany | 2016

Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40

Lei Shen; Zhiqin Liu; Sheng Yang; Tong Yang; Jiaqi Liang; Jiayu Wen; Jiazhi Li; Lanping Shi; Qian Tang; Wei Shi; Jiong Hu; Cailing Liu; Yangwen Zhang; Wei Lin; Rongzhang Wang; Huanxin Yu; Shaoliang Mou; Ansar Hussain; Wei Cheng; Hanyang Cai; Li He; Deyi Guan; Yang Wu; Shuilin He

Highlight CabZIP63, indirectly activated by CaWRKY40, positively modulates transcription of CabZIP63 and CaWRKY40, enhances the binding of CaWRKY40 to its target promoters, and, therefore, increases resistance to Ralstonia solanacearum and thermotolerance.


Scientific Reports | 2015

Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal

Y. Yang; Xueqi Fu; Shaokui Wang; Zhiqin Liu; Y.F. Ye; Beicheng Sun; C.T. Liu

One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage.


International Journal of Molecular Sciences | 2017

Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection

Zhiqin Liu; Lanping Shi; Sheng Yang; Youquan Lin; Yahong Weng; Xia Li; Ansar Hussain; Ali Noman; Shuilin He

Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5′ deletion assay revealed that pChiIV3−712 to −459 bp was found to be sufficient for ChiIV3’ response to PCI. Furthermore, a mutation assay indicated that W-box−466 to −461 bp in pChiIV3−712 to −459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.

Collaboration


Dive into the Zhiqin Liu's collaboration.

Top Co-Authors

Avatar

Shuilin He

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Deyi Guan

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Shaoliang Mou

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Ailian Qiu

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Sheng Yang

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Lei Shen

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Ansar Hussain

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Hanyang Cai

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Lanping Shi

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yan Lai

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge