Zhiru Li
New England Biolabs
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiru Li.
PLOS Neglected Tropical Diseases | 2011
Zhiru Li; Amanda L. Garner; Christian Johannes Gloeckner; Kim D. Janda; Clotilde K. S. Carlow
The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. Note The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286).
PLOS ONE | 2012
Zhiru Li; Clotilde K. S. Carlow
The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium Wolbachia (wBm) that is required for parasite survival. Consequently, targeting wBm is a promising approach for anti-filarial drug development. The Type IV secretion system (T4SS) plays an important role in bacteria-host interactions and is under stringent regulation by transcription factors. In wBm, most T4SS genes are contained in two operons. We show the wBm is active since the essential assembly factor virB8-1, is transcribed in adult worms and larval stages, and VirB8-1 is present in parasite lysates. We also identify two transcription factors (wBmxR1 and wBmxR2) that bind to the promoter region of several genes of the T4SS. Gel shift assays show binding of wBmxR1 to regions upstream of the virB9-2 and wBmxR2 genes, whereas wBmxR2 binds to virB4-2 and wBmxR1 promoter regions. Interestingly, both transcription factors bind to the promoter of the ribA gene that precedes virB8-1, the first gene in operon 1 of the wBm T4SS. RT-PCR reveals ribA and virB8-1 genes are co-transcribed as one operon, indicating the ribA gene and T4SS operon 1 are co-regulated by both wBmxR1 and wBmxR2. RibA encodes a bi-functional enzyme that catalyzes two essential steps in riboflavin (Vitamin B2) biosynthesis. Importantly, the riboflavin pathway is absent in B. malayi. We demonstrate the pathway is functional in wBm, and observe vitamin B2 supplementation partially rescues filarial parasites treated with doxycycline, indicating Wolbachia may supply the essential vitamin to its worm host. This is the first characterization of a transcription factor(s) from wBm and first report of co-regulation of genes of the T4SS and riboflavin biosynthesis pathway. In addition, our results demonstrate a requirement of vitamin B2 for worm health and fertility, and imply a nutritional role of the symbiont for the filarial parasite host.
PLOS Pathogens | 2014
Jeremiah D. Farelli; Brendan D. Galvin; Zhiru Li; Chunliang Liu; Miyuki Aono; Megan Garland; Olivia E. Hallett; Thomas B. Causey; Alana Ali-Reynolds; Daniel Saltzberg; Clotilde K. S. Carlow; Debra Dunaway-Mariano; Karen N. Allen
Parasitic nematodes are responsible for devastating illnesses that plague many of the worlds poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible.
Trends in Parasitology | 2015
Andy Alhassan; Zhiru Li; Catherine B. Poole; Clotilde K. S. Carlow
Filarial parasites are tissue-dwelling nematodes responsible for some of the most important neglected tropical diseases. All are transmitted by blood-sucking arthropod. Onchocerciasis and lymphatic filariasis in particular are the cause of much disfigurement and morbidity. Accurate parasite detection is essential for the success of filariasis control programs. The current toolbox for diagnosis and surveillance is limited because many of the available tools suffer from lack of sensitivity and specificity, and/or are cost-prohibitive. We review the methods currently in use and discuss the prospects for developing new molecular diagnostic (MDx) tools based on nucleic acid detection. We briefly describe recent developments in isothermal nucleic acid amplification and detection, and focus on emerging technologies that are field-deployable or suitable for low-resource settings.
Nature Communications | 2017
Hao Yu; Patricia Dranchak; Zhiru Li; Ryan MacArthur; Matthew S. Munson; Nurjahan Mehzabeen; Nathan J. Baird; Kevin P. Battalie; David J. Ross; Scott Lovell; Clotilde K. S. Carlow; Hiroaki Suga; James Inglese
Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.
PLOS ONE | 2017
Catherine B. Poole; Zhiru Li; Andy Alhassan; Dylan Guelig; Steven Diesburg; Nathan A. Tanner; Yinhua Zhang; Thomas C. Evans; Paul LaBarre; Samuel Wanji; Robert Burton; Clotilde K. S. Carlow
Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP) tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA) device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus) or repetitive DNA (40 min, B. malayi and W. bancrofti) was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs.
Veterinary Parasitology | 2011
Zhiru Li; Brendan D. Galvin; Sylvine Raverdy; Clotilde K. S. Carlow
Drug treatments for heartworm disease have not changed significantly in the last decade. Due to concerns about possible drug resistance and their lower efficacy against adult worms, there is a need for the development of new antifilarial drug therapies. The recent availability of genomic sequences for the related filarial parasite Brugia malayi and its Wolbachia endosymbiont enables genome-wide searching for new drug targets. Phosphoglycerate mutase (PGM) enzymes catalyze the critical isomerization of 3-phosphoglycerate (3-PG) and 2-phosphoglycerate (2-PG) in glycolytic and gluconeogenic metabolic pathways. There are two unrelated PGM enzymes, which are structurally distinct and possess different mechanisms of action. The mammalian enzyme requires 2,3-bisphosphoglycerate as a cofactor (dependent PGM or dPGM), while the other type of PGM does not (independent PGM or iPGM). In the present study, we have determined that Dirofilaria immitis and its Wolbachia endosymbiont both possess active iPGM. We describe the molecular characterization and catalytic properties of each enzyme. Our results will facilitate the discovery of selective inhibitors of these iPGMs as potentially novel drug treatments for heartworm disease.
PLOS Neglected Tropical Diseases | 2014
Brendan D. Galvin; Zhiru Li; Estelle Villemaine; Catherine B. Poole; Melissa S. Chapman; Paul G. Wyatt; Clotilde K. S. Carlow
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5–10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.
Molecular and Biochemical Parasitology | 2016
Andy Alhassan; Mike Y. Osei-Atweneboana; Kwadwo F. Kyeremeh; Catherine B. Poole; Zhiru Li; Edward Tettevi; Nathan A. Tanner; Clotilde K. S. Carlow
Accurate, simple and affordable diagnostics are needed to detect Onchocerca volvulus infection in humans. A newly developed colorimetric loop-mediated isothermal amplification (LAMP) assay was compared to PCR and skin snip analysis for diagnosis of onchocerciasis. The robustness and simplicity of the assay indicates that it may be a useful field tool for surveillance in endemic countries.
bioRxiv | 2018
Amit Sinha; Zhiru Li; Luo Sun; Clotilde K. S. Carlow
Wolbachia, an alpha-proteobacterium closely related to Rickettsia is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500X median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome is comprised of IS elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are scattered around the genome. Orthology analysis identified a core proteome of 536 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the T4SS. KEGG analysis revealed the absence of 5 genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular and genetic analyses on this strain and related Wolbachia. Data deposition Raw data from PacBio sequencing have been deposited in the NCBI SRA database under BioProject accession number PRJNA454708, as runs SRR7784284, SRR7784285, SRR7784286, SRR7784287. The paired-end reads from Illumina library used for indel correction are available from NCBI SRA database as accession SRR7623731. The assembled genome and annotations have been submitted to the NCBI GenBank database with accession number CP031221.