Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine B. Poole is active.

Publication


Featured researches published by Catherine B. Poole.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Molecular and Biochemical Parasitology | 2010

Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi.

Catherine B. Poole; Paul J. Davis; Jingmin Jin; Larry A. McReynolds

Characterization of small RNAs from the filarial nematode Brugia malayi is the initial step in understanding their role in gene silencing. Both RNA cloning and bioinformatics were used to identify 32 microRNAs (miRNAs) belonging to 24 families. One family, miR-36 only occurs in helminths including B. malayi. Several of the miRNAs are arranged in clusters and are coordinately expressed as determined by northern blot analysis. In addition, small RNAs were identified from Pao/Bleo retrotransposons and their associated repeat sequences indicating that B. malayi uses an RNAi mechanism to maintain genome integrity. Analysis of these data provides a first glimpse into how small RNA-mediated silencing pathways regulate the parasitic life cycle of B. malayi.


BioTechniques | 2010

Protein-mediated miRNA detection and siRNA enrichment using p19

Jingmin Jin; Melissa Cid; Catherine B. Poole; Larry A. McReynolds

p19 RNA binding protein from the Carnation Italian ringspot virus (CIRV) is an RNA-silencing suppressor that binds small interfering RNA (siRNA) with high affinity. We created a bifunctional p19 fusion protein with an N-terminal maltose binding protein (MBP), for protein purification, and a C-terminal chitin binding domain (CBD) to bind p19 to chitin magnetic beads. The fusion protein binds dsRNAs in the size range of 20-23 nucleotides, but does not bind ssRNA or dsDNA. Relative affinities of the p19 fusion protein for different-length RNA and DNA substrates were determined. Binding specificity of the p19 fusion protein for small dsRNA allows detection of miRNA:RNA probe duplexes. Using radioactive RNA probes, we were able to detect low levels of miRNAs in the sub-femtomole range and in the presence of a million-fold excess of total RNA. Detection is linear over three logs. Unlike most nucleic acid detection methods, p19 selects for RNA hybrids of correct length and structure. Rules for designing optimal RNA probes for p19 detection of miRNAs were determined by in vitro binding of 18 different dsRNA oligos to p19. These studies demonstrate the potential of p19 fusion protein to detect miRNAs and isolate endogenous siRNAs.


PLOS Neglected Tropical Diseases | 2012

Diagnosis of Brugian Filariasis by Loop-Mediated Isothermal Amplification

Catherine B. Poole; Nathan A. Tanner; Yinhua Zhang; Thomas C. Evans; Clotilde K. S. Carlow

In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.


PLOS Neglected Tropical Diseases | 2016

Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination

Sumudu Britton; Qin Cheng; Matthew J. Grigg; Catherine B. Poole; Cielo Pasay; Timothy William; Kimberley Fornace; Nicholas M. Anstey; Colin J. Sutherland; Chris Drakeley; James S. McCarthy

Introduction Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority. Methods A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia. Results The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87–99%); 61/64), and specificity of 100% (95% CI 86–100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29–96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105). Conclusion This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings.


Molecular and Biochemical Parasitology | 1990

A rapid DNA assay for the species-specific detection and quantification of Brugia in blood samples

Catherine B. Poole; Steven Williams

This report describes a new assay for detecting filarial parasites of the genus Brugia in blood samples using labeled DNA probes. The sequences of these DNA probes are based on the HhaI repeat DNA family found in the genus Brugia. These DNA probes are species-specific and can detect the DNA from a single microfilaria in hybridization assays. To adapt this test for use on blood samples collected in the field, complex steps to separate microfilariae from blood cells and to purify parasite DNA were eliminated. We found that the most effective method was to filter blood samples through 5.0 microns pore nitrocellulose membranes, lyse the microfilariae on the membranes by proteinase K digestion, denature the parasite DNA with sodium hydroxide, and hybridize with the DNA probe. With this method, individual microfilariae can be visualized and counted on autoradiograms. The assay was evaluated in a mock field study using Brugia malayi-infected jirds and was found to be an efficient and accurate method for quantifying microfilariae in blood samples.


PLOS ONE | 2014

Diversity and expression of microRNAs in the filarial parasite, Brugia malayi

Catherine B. Poole; Weifeng Gu; Sanjay Kumar; Jingmin Jin; Paul J. Davis; David Bauche; Larry A. McReynolds

Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.


Parasite Immunology | 2012

Filarial and Wolbachia genomics

Alan L. Scott; Elodie Ghedin; Thomas B. Nutman; Larry A. McReynolds; Catherine B. Poole; Barton E. Slatko; Jeremy M. Foster

Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well‐being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95‐Mb genome of the human filarial parasite Brugia malayi– representing the first helminth parasite genome to be sequenced – has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free‐living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage‐associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial–Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics.


Trends in Parasitology | 2015

Expanding the MDx toolbox for filarial diagnosis and surveillance

Andy Alhassan; Zhiru Li; Catherine B. Poole; Clotilde K. S. Carlow

Filarial parasites are tissue-dwelling nematodes responsible for some of the most important neglected tropical diseases. All are transmitted by blood-sucking arthropod. Onchocerciasis and lymphatic filariasis in particular are the cause of much disfigurement and morbidity. Accurate parasite detection is essential for the success of filariasis control programs. The current toolbox for diagnosis and surveillance is limited because many of the available tools suffer from lack of sensitivity and specificity, and/or are cost-prohibitive. We review the methods currently in use and discuss the prospects for developing new molecular diagnostic (MDx) tools based on nucleic acid detection. We briefly describe recent developments in isothermal nucleic acid amplification and detection, and focus on emerging technologies that are field-deployable or suitable for low-resource settings.


Journal of Biological Chemistry | 2002

A Novel Cyclophilin from Parasitic and Free-living Nematodes with a Unique Substrate- and Drug-binding Domain

Dong Ma; Laura S. Nelson; Krystel LeCoz; Catherine B. Poole; Clotilde K. S. Carlow

A highly diversified member of the cyclophilin family of peptidyl-prolyl cis-trans isomerases has been isolated from the human parasite Onchocerca volvulus(OvCYP-16). This 25-kDa cyclophilin shares 43–46% similarity to other filarial cyclophilins but does not belong to any of the groups previously defined in invertebrates or vertebrates. A homolog was also isolated from Caenorhabditis elegans(CeCYP-16). Both recombinant O. volvulus and C. elegans cyclophilins were found to possess an enzyme activity with similar substrate preference and insensitivity to cyclosporin A. They represent novel cyclophilins with important differences in the composition of the drug-binding site in particular, namely, a Glu124 (C. elegans) or Asp123 (O. volvulus) residue present in a critical position. Site-directed mutagenesis studies and kinetic characterization demonstrated that the single residue dictates the degree of binding to substrate and cyclosporin A.CeCYP-16::GFP-expressing lines were generated with expression in the anterior and posterior distal portions of the intestine, in all larval stages and adults. An exception was found in the dauer stage, where fluorescence was observed in both the cell bodies and processes of the ventral chord motor neurons but was absent from the intestine. These studies highlight the extensive diversification of cyclophilins in an important human parasite and a closely related model organism.

Collaboration


Dive into the Catherine B. Poole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge