Zhisheng Zhong
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhisheng Zhong.
Cell Cycle | 2007
Ling-Zhu Yu; Bo Xiong; Wen-Xue Gao; Chun-Min Wang; Zhisheng Zhong; Li-Jun Huo; Qiang Wang; Yi Hou; Kui Liu; X Johné Liu; Heide Schatten; Da-Yuan Chen; Qing-Yuan Sun
It is well known that MAPK plays pivotal roles in oocyte maturation, but the function of MEK (MAPK kinase) remains unknown. We have studied the expression, subcellular localization and functional roles of MEK during meiotic maturation of mouse oocytes. We found that MEK1/2 phoshorylation (p-MEK1/2, indicative of MEK activation) was low in GV (germinal vesicle) stage, increased 2h after GVBD (germinal vesicle breakdown), and reached the maximum at metaphase II. Secondly, we found that P-MEK1/2 was restricted in the GV prior to GVBD. In prometaphase I and metaphase I, p-MEK1/2 was mainly associated with the spindle, especially with the spindle poles. At anaphase I and telophase I, p-MEK1/2 became diffusely distributed in the region between the separating chromosomes, and then became associated with the midbody. The association of p-MEK1/2 with spindle poles was further confirmed by its colocalization with the centrosomal proteins, γ-tubulin and NuMA. Thirdly, we have investigated the possible functional role of MEK1/2 activation by intravenous administration and intrabursal injection of a specific MEK inhibitor, U0126, and by microinjection of MEK siRNA into oocytes. All these manipulations cause disorganized spindle poles and spindle structure, misaligned chromosomes and larger than normal polar bodies. Our results suggest that MEK1/2 may function as a centrosomal protein and may have roles in microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte maturation.
Mechanisms of Development | 2004
Li-Jun Huo; Heng-Yu Fan; Zhisheng Zhong; Da-Yuan Chen; Heide Schatten; Qing-Yuan Sun
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.
Biology of Reproduction | 2004
Li-Juan Yao; Zhisheng Zhong; Li-Sheng Zhang; Da-Yuan Chen; Heide Schatten; Qing-Yuan Sun
Abstract Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.
Biology of Reproduction | 2003
Heng-Yu Fan; Li-Jun Huo; Xiao-Qian Meng; Zhisheng Zhong; Yi Hou; Da-Yuan Chen; Qing-Yuan Sun
Abstract Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.
Journal of Cellular Physiology | 2012
Namdori R. Mtango; Miriam Sutovsky; Andrej Susor; Zhisheng Zhong; Keith E. Latham; Peter Sutovsky
Post‐translational protein modification by ubiquitination, a signal for lysosomal or proteasomal proteolysis, can be regulated and reversed by deubiquitinating enzymes (DUBs). This study examined the roles of UCHL1 and UCHL3, two members of ubiquitin C‐terminal hydrolase (UCH) family of DUBs, in murine fertilization and preimplantation development. Before fertilization, these proteins were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Intracytoplasmic injection of the general UCH‐family inhibitor ubiquitin‐aldehyde (UBAL) or antibodies against UCHL3 into mature metaphase II oocytes blocked fertilization by reducing sperm penetration of the zona pellucida and incorporation into the ooplasm, suggesting a role for cortical UCHL1 in sperm incorporation. Both UBAL and antibodies against UCHL1 injected at the onset of oocyte maturation (germinal vesicle stage) reduced the fertilizing ability of oocytes. The subfertile Uchl1gad−/− mutant mice showed an intriguing pattern of switched UCH localization, with UCHL3 replacing UCHL1 in the oocyte cortex. While fertilization defects were not observed, the embryos from homozygous Uchl1gad−/− mutant females failed to undergo morula compaction and did not form blastocysts in vivo, indicating a maternal effect related to UCHL1 deficiency. We conclude that the activity of oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex. J. Cell. Physiol. 227: 1592–1603, 2012.
Journal of Proteome Research | 2010
Zhiming Han; Cheng Guang Liang; Yong Cheng; Xunbao Duan; Zhisheng Zhong; Santhi Potireddy; Camilo Moncada; Salim Merali; Keith E. Latham
Embryos produced by somatic cell nuclear transfer (SCNT) display low term developmental potential. This is associated with deficiencies in spindle composition prior to activation and at early mitotic divisions, including failure to assemble certain proteins on the spindle. The protein-deficient spindles are accompanied by chromosome congression defects prior to activation and during the first mitotic divisions of the embryo. The molecular basis for these deficiencies and how they might be avoided are unknown. Proteomic analyses of spindles isolated from normal metaphase II (MII) stage oocytes and SCNT constructs, along with a systematic immunofluorescent survey of known spindle-associated proteins were undertaken. This was the first proteomics study of mammalian oocyte spindles. The study revealed four proteins as being deficient in spindles of SCNT embryos in addition to those previously identified; these were clathrin heavy chain (CLTC), aurora B kinase, dynactin 4, and casein kinase 1 alpha. Due to substantial reduction in CLTC abundance after spindle removal, we undertook functional studies to explore the importance of CLTC in oocyte spindle function and in chromosome congression defects of cloned embryos. Using siRNA knockdown, we demonstrated an essential role for CLTC in chromosome congression during oocyte maturation. We also demonstrated rescue of chromosome congression defects in SCNT embryos at the first mitosis using CLTC mRNA injection. These studies are the first to employ proteomics analyses coupled to functional interventions to rescue a specific molecular defect in cloned embryos.
Biology of Reproduction | 2004
Li-Jun Huo; Heng-Yu Fan; Cheng-Guang Liang; Ling-Zhu Yu; Zhisheng Zhong; Da-Yuan Chen; Qing-Yuan Sun
Abstract Degradation of proteins mediated by the ubiquitin-proteasome pathway (UPP) plays essential roles in the eukaryotic cell cycle. The main aim of the present study was to analyze the functional roles and regulatory mechanisms of the UPP in pig oocyte meiotic maturation, activation, and early embryo mitosis by drug treatment, Western blot analysis, and confocal microscopy. By using the hypoxanthine-maintained meiotic arrest model, we showed that the meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated in a dose- and time-dependent manner by two potent and cell-permeable proteasome inhibitors. Both the mitogen-activated protein kinase (MAPK) kinase inhibitor U0126 and the maturation-promoting factor inhibitor roscovitine overcame the stimulation of germinal vesicle breakdown induced by proteasome inhibitors. The phosphorylation of MAPK and p90rsk and the expression of cyclin B1 increased in a dose- and time-dependent manner when treated with proteasome inhibitors during oocyte in vitro-maturation culture. Both U0126 and roscovitine inhibited the phosphorylation of MAPK and p90rsk, and the synthesis of cyclin B1 stimulated by proteasome inhibitors. When matured oocytes were pretreated with proteasome inhibitors and then fertilized or artificially activated, the second polar body emission and the pronuclear formation were inhibited, and the dephosphorylation of MAPK and p90rsk as well as the degradation of cyclin B1 that should occur after oocyte activation were also inhibited. We also investigated, to our knowledge for the first time, the subcellular localization of 20S proteasome α subunits at different stages of oocyte and early embryo development. The 20S proteasome α subunits were accumulated in the germinal vesicle, around the condensed chromosomes at prometaphase, with spindle at metaphase I and II, the region between the separating chromosomes, and especially the midbody at anaphase I and telophase I, the pronucleus, and the nucleus in early embryonic cells. In conclusion, our results suggest that the UPP is important at multiple steps of pig oocyte meiosis, fertilization, and early embryonic mitosis and that it may play its roles by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.
Cloning and Stem Cells | 2009
Yanhong Hao; David Wax; Zhisheng Zhong; Clifton N. Murphy; Jason W. Ross; August Rieke; Melissa Samuel; Lee D. Spate; Paul Dyce; Julang Li; Peter Sutovsky; Randall S. Prather
Although transgenic animal production through somatic cell nuclear transfer (SCNT) has been successful, the process is still inefficient. One major limitation is the use of somatic donor cells that have a finite life span. Identification and isolation of a cell type capable of rapid proliferation while possessing immortal or prolonged life span in culture and is capable of being genetically modified would be very valuable for utilization in the production of genetically modified pigs. Here we report the birth of live piglets after cloning by using porcine skin-derived stem cells (SSC) as a donor cell type. In the present study, cell cycle analysis indicates that the porcine SSC proliferate rapidly in vitro. The porcine SSC are capable of producing live offspring and can be genetically modified with positive selection. Utilization of porcine SSC may prove to be an excellent cell type for genetic modification followed by nuclear transfer for the production of transgenic pigs.
Cell Cycle | 2007
Zhisheng Zhong; Lee D. Spate; Yanhong Hao; Rongfeng Li; Liangxue Lai; Mika Katayama; Qing-Yuan Sun; Randall S. Prather; Heide Schatten
Remodeling of donor cell centrosomes and the centrosome-associated cytoskeleton is crucially important for nuclear cloning as centrosomes are the main microtubule organizing centers that play a significant role in cell division and embryo development. Centrosome dysfunctions have been implicated in various diseases including cancer and metabolic disorders and may also play a role in developmental abnormalities that are frequently seen in cloned animals. In the present studies we investigated microtubule organization and the reorganization and fate of the integral centrosome protein γ-tubulin and the centrosome-associated protein centrin in intraspecies (pig oocytes; pig fetal fibroblast cells) and interspecies (pig oocytes; mouse fibroblast cells) reconstructed embryos by using antibodies to γ-tubulin or GFP-centrin transfected mouse fibroblasts as donor cells. Microtubules were stained with antibodies to α-tubulin. In-vitro-fertilized oocytes and nuclear transfer (NT) reconstructed oocytes were sequentially analyzed at different developmental stages. Epi-fluorescence results revealed mitotic spindle abnormalities in NT embryos during the first cell cycle (39.4%, 13/33) which were significantly higher than those in IVF embryos (17.0%, 7/41). The abnormalities in IVF embryos are due to polyspermy while the abnormalities in NT embryos are due to donor cell centrosome dysfunctions. In the NT embryos with abnormal microtubule and centrosome organization, γ-tubulin staining revealed multipolar centrosome foci while DAPI staining showed misalignment of chromosomes. In intraspecies and interspecies embryos the GFP-centrin signal was detected until 3 hrs after fusion. GFP-centrin was not detected at 8 hrs after NT which is consistent with previous results using anti-centrin antibody staining in intraspecies NT porcine embryos. These data indicate that 1) abnormalities in microtubule and centrosome organization are associated with nuclear cloning at a higher rate than observed in IVF embryos; 2) centrosome and cytoskeletal abnormalities in IVF embryos are due to polyspermy while centrosome and cytoskeletal abnormalities in NT embryos are due to donor cell centrosome dysfunctions; and 3) GFP-centrin of the donor cell centrosome provides a reliable marker to follow its fate in intraspecies reconstructed embryos.
Frontiers in Bioscience | 2006
Zhonghua Liu; Heide Schatten; Yanhong Hao; Liangxue Lai; David Wax; Melissa Samuel; Zhisheng Zhong; Q-Y Sun; Randall S. Prather
The Nuclear Mitotic Apparatus (NuMA) protein is a multifunctional protein that is localized to the nucleus in interphase and to the poles of the mitotic apparatus during mitosis. In unfertilized porcine oocytes, NuMA is localized to the meiotic spindle. NuMA is removed along with the meiotic spindle during the enucleation process before reconstructing the egg by introducing the donor cell nucleus to produce cloned embryos. Questions have been raised regarding the source for NuMA in cloned embryos, as the enucleated oocyte does not contain detectable NuMA in the cytoplasm. To determine the source of NuMA in porcine nuclear transfer (NT) embryos, we conducted an immunofluorescence microscopy study with antibodies against NuMA to investigate the appearance and distribution of NuMA before and after reconstructing NT embryos with porcine skin fibroblasts. We used donor cells from a confluent culture with all cells in interphase. For comparative studies, we also determined the immunofluorescence pattern of NuMA, gamma-tubulin, and alpha-tubulin in porcine fibroblasts, parthenogenetic embryos and in vitro fertilized (IVF) embryos. Results show that NuMA was localized in nuclei of 33.5% (163/456) of the serum-deprived fibroblasts used as donor cells. No NuMA staining was detected in enucleated pig oocytes. Immediately after nuclear transfer, NuMA staining was absent in all donor cell fibroblast nuclei (0 h) but staining was detected by 6 h within the reconstructed eggs, at which time the transferred somatic cell nucleus swelled in most cells (19/27) and became a pronucleus-like structure. NuMA was localized exclusively within the pronucleus-like structures (15/27). At 25 h, NuMA was detected inside the nucleus (16/25) either in one-cell or in 2-cell stage embryos. Interestingly, in parthenogenetic embryos, NuMA staining was not detected in all 42 eggs examined at 1 h, and evident NuMA staining was only detected inside a few (4/51 at 6 h; 6/48 at 25 h) of the nuclei. In IVF embryos, NuMA was detected within the nucleus at 6 h (5/20) and 25 h (13/16). These results show that the donor cell nucleus contains NuMA that is contributed to the reconstructed embryo and possibly activated by mechanisms in the oocytes cytoplast.