Zhiwen Shi
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiwen Shi.
Nature Materials | 2013
Wei Yang; Guorui Chen; Zhiwen Shi; Cheng-Cheng Liu; Lianchang Zhang; Guibai Xie; Meng Cheng; D. Wang; Rong Yang; Dongxia Shi; Kenji Watanabe; Takashi Taniguchi; Yugui Yao; Yuanbo Zhang; Guangyu Zhang
Hexagonal boron nitride (h-BN) has recently emerged as an excellent substrate for graphene nanodevices, owing to its atomically flat surface and its potential to engineer graphenes electronic structure. Thus far, graphene/h-BN heterostructures have been obtained only through a transfer process, which introduces structural uncertainties due to the random stacking between graphene and h-BN substrate. Here we report the epitaxial growth of single-domain graphene on h-BN by a plasma-assisted deposition method. Large-area graphene single crystals were successfully grown for the first time on h-BN with a fixed stacking orientation. A two-dimensional (2D) superlattice of trigonal moiré pattern was observed on graphene by atomic force microscopy. Extra sets of Dirac points are produced as a result of the trigonal superlattice potential and the quantum Hall effect is observed with the 2D-superlattice-related feature developed in the fan diagram of longitudinal and Hall resistance, and the Dirac fermion physics near the original Dirac point is unperturbed. The macroscopic epitaxial graphene is in principle limited only by the size of the h-BN substrate and our synthesis method is potentially applicable on other flat surfaces. Our growth approach could thus open new ways of graphene band engineering through epitaxy on different substrates.
Advanced Materials | 2010
Rong Yang; Lianchang Zhang; Yi Wang; Zhiwen Shi; Dongxia Shi; Hong-Jun Gao; E. G. Wang; Guangyu Zhang
A highly controllable, dry, anisotropic etching technique for graphene sheets has been achieved using hydrogen plasma etching. Zigzag edge formation was achieved by starting the etching at edges and defects and depends strongly on crystallographic orientation of the graphene. This dry, anisotropic etching approach combined with the standard lithographic technique is ideal for scalable graphene tailoring because the etching rates can be precisely controlled and the quality of the graphene can be preserved.
Applied Physics Letters | 2012
Jing Zhao; Congli He; Rong Yang; Zhiwen Shi; Meng Cheng; Wei Yang; Guibai Xie; D. Wang; Dongxia Shi; Guangyu Zhang
Graphene shows promise on strain sensor applications, but the piezoresistive sensitivity of perfect graphene is low due to its weak electrical conductivity response upon structural deformation. In this paper, we used nanographene films for ultra-sensitive strain sensors. The piezoresistive sensitivity of nanographene films with different thicknesses and conductivities was systematically investigated and a nearly inverse proportional correlation was found. A gauge factor over 300, the highest so far for graphene-based strain sensors, was achieved. A charge tunneling model was used to explain the piezoresistive characteristics of nanographene films, which indicates our results provide a different rout toward ultra-sensitive strain sensors.
Physics Letters A | 2007
Rui Yang; Bing-Hong Wang; Jie Ren; Wen-Jie Bai; Zhiwen Shi; Wen-Xu Wang; Tao Zhou
In this Letter, we propose a modified susceptible-infected-recovered (SIR) model, in which each node is assigned with an identical capability of active contacts, A, at each time step. In contrast to the previous studies, we find that on scale-free networks, the density of the recovered individuals in the present model shows a threshold behavior. We obtain the analytical results using the mean-field theory and find that the threshold value equals 1/A, indicating that the threshold value is independent of the topology of the underlying network. The simulations agree well with the analytic results. Furthermore, we study the time behavior of the epidemic propagation and find a hierarchical dynamics with three plateaus. Once the highly connected hubs are reached, the infection pervades almost the whole network in a progressive cascade across smaller degree classes. Then, after the previously infected hubs are recovered, the disease can only propagate to the class of smallest degree till the infected individuals are all recovered. The present results could be of practical importance in the setup of dynamic control strategies.
Nature Nanotechnology | 2016
Likai Li; Jonghwan Kim; Chenhao Jin; Guo Jun Ye; Diana Y. Qiu; Felipe H. da Jornada; Zhiwen Shi; Long Chen; Zuocheng Zhang; Fangyuan Yang; Kenji Watanabe; Takashi Taniguchi; Wencai Ren; Steven G. Louie; Xianhui Chen; Yuanbo Zhang; Feng Wang
Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectral range from the visible to the mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that closely match the absorption edge, indicating that they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other 2D materials in electronic and opto-electronic applications.
Nature | 2015
Long Ju; Zhiwen Shi; Nityan Nair; Yinchuan Lv; Chenhao Jin; Jairo Velasco; Claudia Ojeda-Aristizabal; Hans A. Bechtel; Michael C. Martin; Alex Zettl; James G. Analytis; Feng Wang
Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.
Advanced Materials | 2011
Zhiwen Shi; Rong Yang; Lianchang Zhang; Yi Wang; Donghua Liu; Dongxia Shi; Enge Wang; Guangyu Zhang
A top-down approach for controlled tailoring of graphene nanostructures with zigzag edges is presented. It consists of two key steps: artificial defect patterning and hydrogen-plasma etching. With this approach, various graphene nanostructures with sub-10 nm features and identical zigzag edges are reliably achieved. This approach shows great promise for making future graphene devices or circuits.
ACS Nano | 2012
Congli He; Zhiwen Shi; Lianchang Zhang; Wei Yang; Rong Yang; Dongxia Shi; Guangyu Zhang
We report a planar graphene/SiO(2) nanogap structure for multilevel resistive switching. Nanosized gaps created on a SiO(2) substrate by electrical breakdown of nanographene electrodes were used as channels for resistive switching. Two-terminal devices exhibited excellent memory characteristics with good endurance up to 10(4) cycles, long retention time more than 10(5) s, and fast switching speed down to 500 ns. At least five conduction states with reliability and reproducibility were demonstrated in these memory devices. The mechanism of the resistance switching effect was attributed to a reversible thermal-assisted reduction and oxidation process that occurred at the breakdown region of the SiO(2) substrate. In addition, the uniform and wafer-size nanographene films with controlled layer thickness and electrical resistivity were grown directly on SiO(2) substrates for scalable device fabrications, making it attractive for developing high-density and low-cost nonvolatile memories.
Nature Communications | 2014
Zhiguo Chen; Zhiwen Shi; Wei Yang; Xiaobo Lu; You Lai; Hugen Yan; Feng Wang; Guangyu Zhang; Zhiqiang Li
Van der Waals heterostructures formed by assembling different two-dimensional atomic crystals into stacks can lead to many new phenomena and device functionalities. In particular, graphene/boron-nitride heterostructures have emerged as a very promising system for band engineering of graphene. However, the intrinsic value and origin of the bandgap in such heterostructures remain unresolved. Here we report the observation of an intrinsic bandgap in epitaxial graphene/boron-nitride heterostructures with zero crystallographic alignment angle. Magneto-optical spectroscopy provides a direct probe of the Landau level transitions in this system and reveals a bandgap of ~38 meV (440 K). Moreover, the Landau level transitions are characterized by effective Fermi velocities with a critical dependence on specific transitions and magnetic field. These findings highlight the important role of many-body interactions in determining the fundamental properties of graphene heterostructures.
Small | 2012
Wei Yang; Congli He; Lianchang Zhang; Yi Wang; Zhiwen Shi; Meng Cheng; Guibai Xie; D. Wang; Rong Yang; Dongxia Shi; Guangyu Zhang
A systematic study on nanographene grown directly on silicon dioxide substrates is reported. The growth is carried out in a remote plasma-enhanced chemical vapor deposition system at a low temperature of around 550 °C with methane gas as the carbon source. Atomic force microscopy is used to characterize the nanographene morphology, and Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning tunneling microscopy are exploited to identify the in-plane sp(2) bonding structures of nanographene samples. Electrical transport properties are measured at various temperatures down to 4 K. Tunneling effects, minimal conductance at the charge-neutral point, sheet resistances, and Dirac point position at different channel lengths are investigated. In addition, nanographene film possesses high transmittance properties, as indicated by transmittance spectra. Nanographene devices are fabricated from rippled structures, and show great promise for strain-gauge sensor applications.