Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhixuan Feng is active.

Publication


Featured researches published by Zhixuan Feng.


Water Research | 2012

Spatial and temporal variation in indicator microbe sampling is influential in beach management decisions.

Amber A. Enns; Laura J. Vogel; Amir M. Abdelzaher; Helena M. Solo-Gabriele; Lisa R. W. Plano; Maribeth L. Gidley; Matthew C. Phillips; James S. Klaus; Alan M. Piggot; Zhixuan Feng; Ad Reniers; Brian K. Haus; Samir M. Elmir; Yifan Zhang; Nasly H. Jimenez; Noha Abdel-Mottaleb; Michael E. Schoor; Alexis Brown; Sumbul Q. Khan; Adrienne S. Dameron; Norma C. Salazar; Lora E. Fleming

Fecal indicator microbes, such as enterococci, are often used to assess potential health risks caused by pathogens at recreational beaches. Microbe levels often vary based on collection time and sampling location. The primary goal of this study was to assess how spatial and temporal variations in sample collection, which are driven by environmental parameters, impact enterococci measurements and beach management decisions. A secondary goal was to assess whether enterococci levels can be predictive of the presence of Staphylococcus aureus, a skin pathogen. Over a ten-day period, hydrometeorologic data, hydrodynamic data, bather densities, enterococci levels, and S. aureus levels including methicillin-resistant S. aureus (MRSA) were measured in both water and sand. Samples were collected hourly for both water and sediment at knee-depth, and every 6 h for water at waist-depth, supratidal sand, intertidal sand, and waterline sand. Results showed that solar radiation, tides, and rainfall events were major environmental factors that impacted enterococci levels. S. aureus levels were associated with bathing load, but did not correlate with enterococci levels or any other measured parameters. The results imply that frequencies of advisories depend heavily upon sample collection policies due to spatial and temporal variation of enterococci levels in response to environmental parameters. Thus, sampling at different times of the day and at different depths can significantly impact beach management decisions. Additionally, the lack of correlation between S. aureus and enterococci suggests that use of fecal indicators may not accurately assess risk for some pathogens.


Water Research | 2014

Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water.

Rafael J. Hernandez; Yasiel Hernandez; Nasly H. Jimenez; Alan M. Piggot; James S. Klaus; Zhixuan Feng; Ad Reniers; Helena M. Solo-Gabriele

Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The studys objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3-72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8-12 CFU/g) (P < 0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 10(11) CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 10(11) CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm levels. More work is needed to evaluate the relationships between beach sand mineralogy, biofilm characteristics, and the retention of fecal indicator bacteria in sand.


Marine Pollution Bulletin | 2016

Wave energy level and geographic setting correlate with Florida beach water quality.

Zhixuan Feng; Ad Reniers; Brian K. Haus; Helena M. Solo-Gabriele; Elizabeth Kelly

Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.


Marine Pollution Bulletin | 2015

A predictive model for microbial counts on beaches where intertidal sand is the primary source

Zhixuan Feng; Ad Reniers; Brian K. Haus; Helena M. Solo-Gabriele; John D. Wang; Lora E. Fleming

Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions.


Journal of Environmental Management | 2018

Effect of beach management policies on recreational water quality

Elizabeth Kelly; Zhixuan Feng; Maribeth L. Gidley; Christopher D. Sinigalliano; Naresh Kumar; Allison G. Donahue; A. Reniers; Helena M. Solo-Gabriele

When beach water monitoring programs identify poor water quality, the causes are frequently unknown. We hypothesize that management policies play an important role in the frequency of fecal indicator bacteria (FIB) exceedances (enterococci and fecal coliform) at recreational beaches. To test this hypothesis we implemented an innovative approach utilizing large amounts of monitoring data (n > 150,000 measurements per FIB) to determine associations between the frequency of contaminant exceedances and beach management practices. The large FIB database was augmented with results from a survey designed to assess management policies for 316 beaches throughout the state of Florida. The FIB and survey data were analyzed using t-tests, ANOVA, factor analysis, and linear regression. Results show that beach geomorphology (beach type) was highly associated with exceedance of regulatory standards. Low enterococci exceedances were associated with open coast beaches (n = 211) that have sparse human densities, no homeless populations, low densities of dogs and birds, bird management policies, low densities of seaweed, beach renourishment, charge access fees, employ lifeguards, without nearby marinas, and those that manage storm water. Factor analysis and a linear regression confirmed beach type as the predominant factor with secondary influences from grooming activities (including seaweed densities and beach renourishment) and beach access (including charging fees, employing lifeguards, and without nearby marinas). Our results were observable primarily because of the very large public FIB database available for analyses; similar approaches can be adopted at other beaches. The findings of this research have important policy implications because the selected beach management practices that were associated with low levels of FIB can be implemented in other parts of the US and around the world to improve recreational beach water quality.


Marine Pollution Bulletin | 2017

Significance of beach geomorphology on fecal indicator bacteria levels

Allison G. Donahue; Zhixuan Feng; Elizabeth Kelly; Ad Reniers; Helena M. Solo-Gabriele

Large databases of fecal indicator bacteria (FIB) measurements are available for coastal waters. With the assistance of satellite imagery, we illustrated the power of assessing data for many sites by evaluating beach features such as geomorphology, distance from rivers and canals, presence of piers and causeways, and degree of urbanization coupled with the enterococci FIB database for the state of Florida. We found that beach geomorphology was the primary characteristic associated with enterococci levels that exceeded regulatory guidelines. Beaches in close proximity to marshes or within bays had higher enterococci exceedances in comparison to open coast beaches. For open coast beaches, greater enterococci exceedances were associated with nearby rivers and higher levels of urbanization. Piers and causeways had a minimal contribution, as their effect was often overwhelmed by beach geomorphology. Results can be used to understand the potential causes of elevated enterococci levels and to promote public health.


Journal of Marine Systems | 2010

Cold-front-induced flushing of the Louisiana Bays

Zhixuan Feng; Chunyan Li


Marine Pollution Bulletin | 2014

Microbial release from seeded beach sediments during wave conditions

Matthew C. Phillips; Zhixuan Feng; Laura J. Vogel; Ad Reniers; Brian K. Haus; Amber A. Enns; Yifan Zhang; David Hernandez; Helena M. Solo-Gabriele


Continental Shelf Research | 2012

Using Lagrangian Coherent Structures to understand coastal water quality

L.A. Fiorentino; M. J. Olascoaga; A. Reniers; Zhixuan Feng; F. J. Beron-Vera; Jamie MacMahan


Journal of Geophysical Research | 2016

Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean

Zhixuan Feng; Rubao Ji; Robert G. Campbell; Carin J. Ashjian; Jinlun Zhang

Collaboration


Dive into the Zhixuan Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ad Reniers

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carin J. Ashjian

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Jinlun Zhang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Rubao Ji

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge