Zhiyu Zhao
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiyu Zhao.
Nature | 2015
Elena Piskounova; Michalis Agathocleous; Malea M. Murphy; Zeping Hu; Sara E. Huddlestun; Zhiyu Zhao; A. Marilyn Leitch; Timothy M. Johnson; Ralph J. DeBerardinis; Sean J. Morrison
Solid cancer cells commonly enter the blood and disseminate systemically, but are highly inefficient at forming distant metastases for poorly understood reasons. Here we studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NOD-SCID-Il2rg−/− (NSG) mice. We show that melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficiently metastasizing melanomas. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence on NADPH-generating enzymes in the folate pathway. Antioxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumours in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo.
Nature | 2015
Melih Acar; Kiranmai S. Kocherlakota; Malea M. Murphy; James G. Peyer; Hideyuki Oguro; Christopher N. Inra; Christabel Jaiyeola; Zhiyu Zhao; Katherine Luby-Phelps; Sean J. Morrison
Haematopoietic stem cells (HSCs) reside in a perivascular niche but the specific location of this niche remains controversial. HSCs are rare and few can be found in thin tissue sections or upon live imaging, making it difficult to comprehensively localize dividing and non-dividing HSCs. Here, using a green fluorescent protein (GFP) knock-in for the gene Ctnnal1 in mice (hereafter denoted as α-catulinGFP), we discover that α-catulinGFP is expressed by only 0.02% of bone marrow haematopoietic cells, including almost all HSCs. We find that approximately 30% of α-catulin−GFP+c-kit+ cells give long-term multilineage reconstitution of irradiated mice, indicating that α-catulin−GFP+c-kit+ cells are comparable in HSC purity to cells obtained using the best markers currently available. We optically cleared the bone marrow to perform deep confocal imaging, allowing us to image thousands of α-catulin–GFP+c-kit+ cells and to digitally reconstruct large segments of bone marrow. The distribution of α-catulin–GFP+c-kit+ cells indicated that HSCs were more common in central marrow than near bone surfaces, and in the diaphysis relative to the metaphysis. Nearly all HSCs contacted leptin receptor positive (Lepr+) and Cxcl12high niche cells, and approximately 85% of HSCs were within 10 μm of a sinusoidal blood vessel. Most HSCs, both dividing (Ki-67+) and non-dividing (Ki-67−), were distant from arterioles, transition zone vessels, and bone surfaces. Dividing and non-dividing HSCs thus reside mainly in perisinusoidal niches with Lepr+Cxcl12high cells throughout the bone marrow.
Nature | 2015
Christopher N. Inra; Bo Zhou; Melih Acar; Malea M. Murphy; James A. Richardson; Zhiyu Zhao; Sean J. Morrison
Haematopoietic stresses mobilize haematopoietic stem cells (HSCs) from the bone marrow to the spleen and induce extramedullary haematopoiesis (EMH). However, the cellular nature of the EMH niche is unknown. Here we assessed the sources of the key niche factors, SCF (also known as KITL) and CXCL12, in the mouse spleen after EMH induction by myeloablation, blood loss, or pregnancy. In each case, Scf was expressed by endothelial cells and Tcf21+ stromal cells, primarily around sinusoids in the red pulp, while Cxcl12 was expressed by a subset of Tcf21+ stromal cells. EMH induction markedly expanded the Scf-expressing endothelial cells and stromal cells by inducing proliferation. Most splenic HSCs were adjacent to Tcf21+ stromal cells in red pulp. Conditional deletion of Scf from spleen endothelial cells, or of Scf or Cxcl12 from Tcf21+ stromal cells, severely reduced spleen EMH and reduced blood cell counts without affecting bone marrow haematopoiesis. Endothelial cells and Tcf21+ stromal cells thus create a perisinusoidal EMH niche in the spleen, which is necessary for the physiological response to diverse haematopoietic stresses.
Nature | 2017
Michalis Agathocleous; Corbin E. Meacham; Rebecca J. Burgess; Elena Piskounova; Zhiyu Zhao; Genevieve M. Crane; Brianna L. Cowin; Emily Bruner; Malea M. Murphy; Weina Chen; Gerald J. Spangrude; Zeping Hu; Ralph J. DeBerardinis; Sean J. Morrison
Stem-cell fate can be influenced by metabolite levels in culture, but it is not known whether physiological variations in metabolite levels in normal tissues regulate stem-cell function in vivo. Here we describe a metabolomics method for the analysis of rare cell populations isolated directly from tissues and use it to compare mouse haematopoietic stem cells (HSCs) to restricted haematopoietic progenitors. Each haematopoietic cell type had a distinct metabolic signature. Human and mouse HSCs had unusually high levels of ascorbate, which decreased with differentiation. Systemic ascorbate depletion in mice increased HSC frequency and function, in part by reducing the function of Tet2, a dioxygenase tumour suppressor. Ascorbate depletion cooperated with Flt3 internal tandem duplication (Flt3ITD) leukaemic mutations to accelerate leukaemogenesis, through cell-autonomous and possibly non-cell-autonomous mechanisms, in a manner that was reversed by dietary ascorbate. Ascorbate acted cell-autonomously to negatively regulate HSC function and myelopoiesis through Tet2-dependent and Tet2-independent mechanisms. Ascorbate therefore accumulates within HSCs to promote Tet activity in vivo, limiting HSC frequency and suppressing leukaemogenesis.
Source Code for Biology and Medicine | 2011
Guorong Xu; Nan Deng; Zhiyu Zhao; Thair Judeh; Erik K. Flemington; Dongxiao Zhu
BackgroundNext Generation Sequencing (NGS) technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing this information.ResultsWe have developed a Graphical User Interface (GUI) software tool named SAMMate. SAMMate allows biomedical researchers to quickly process SAM/BAM files and is compatible with both single-end and paired-end sequencing technologies. SAMMate also automates some standard procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized annotation files, SAMMate allows users to accurately calculate the short read coverage of genomic intervals. In particular, for RNA-seq data SAMMate can accurately calculate the gene expression abundance scores for customized genomic intervals using short reads originating from both exons and exon-exon junctions. Furthermore, SAMMate can quickly calculate a whole-genome signal map at base-wise resolution allowing researchers to solve an array of bioinformatics problems. Finally, SAMMate can export both a wiggle file for alignment visualization in the UCSC genome browser and an alignment statistics report. The biological impact of these features is demonstrated via several case studies that predict miRNA targets using short read alignment information files.ConclusionsWith just a few mouse clicks, SAMMate will provide biomedical researchers easy access to important alignment information stored in SAM/BAM files. Our software is constantly updated and will greatly facilitate the downstream analysis of NGS data. Both the source code and the GUI executable are freely available under the GNU General Public License at http://sammate.sourceforge.net.
Journal of Computational Biology | 2008
Zhixiang Chen; Bin Fu; Robert T. Schweller; Boting Yang; Zhiyu Zhao; Binhai Zhu
In this paper, we develop a probabilistic model to approach two realistic scenarios regarding the singular haplotype reconstruction problem--the incompleteness and inconsistency that occurred in the DNA sequencing process to generate the input haplotype fragments, and the common practice used to generate synthetic data in experimental algorithm studies. We design three algorithms in the model that can reconstruct the two unknown haplotypes from the given matrix of haplotype fragments with provable high probability and in linear time in the size of the input matrix. We also present experimental results that conform with the theoretical efficient performance of those algorithms. The software of our algorithms is available for public access and for real-time on-line demonstration.
Nucleic Acids Research | 2011
Nan Deng; Adriane Puetter; Kun Zhang; Kristen Johnson; Zhiyu Zhao; Christopher Taylor; Erik K. Flemington; Dongxiao Zhu
Computational prediction of microRNA targets remains a challenging problem. The existing rule-based, data-driven and expression profiling approaches to target prediction are mostly approached from the gene-level. The increasing availability of RNA-seq data provides a new perspective for microRNA target prediction on the isoform-level. We hypothesize that the splicing isoform is the ultimate effector in microRNA targeting and that the proposed isoform-level approach is capable of predicting non-dominant isoform targets as well as their targeting regions that are otherwise invisible to many existing approaches. To test the hypothesis, we used an iterative expectation maximization (EM) algorithm to quantify transcriptomes at the isoform-level. The performance of the EM algorithm in transcriptome quantification was examined in simulation studies using FluxSimulator. We used joint evidence from isoform-level down-regulation and seed enrichment to predict microRNA-155 targets. We validated our computational approach using results from 149 in-house performed in vitro 3′-UTR assays. We also augmented the splicing database using exon–exon junction evidence, and applied the EM algorithm to predict and quantify 1572 cell line specific novel isoforms. Combined with seed enrichment analysis, we predicted 51 novel microRNA-155 isoform targets. Our work is among the first computational studies advocating the isoform-level microRNA target prediction.
combinatorial pattern matching | 2007
Zhixiang Chen; Bin Fu; Jinhui Xu; Boting Yang; Zhiyu Zhao; Binhai Zhu
In this paper we define a new similarity measure, the nonbreaking similarity, which is the complement of the famous breakpoint distance between genomes (in general, between any two sequences drawn from the same alphabet). When the two input genomes G and H, drawn from the same set of n gene families, contain gene repetitions, we consider the corresponding Exemplar Non-breaking Similarity problem (ENbS) in which we need to delete repeated genes in G and H such that the resulting genomes G and H have the maximum non-breaking similarity. We have the following results. - For the Exemplar Non-breaking Similarity problem, we prove that the Independent Set problem can be linearly reduced to this problem. Hence, ENbS does not admit any factor-n1-e polynomial-time approximation unless P=NP. (Also, ENbS is W[1]-complete.) - We show that for several practically interesting cases of the Exemplar Non-breaking Similarity problem, there are polynomial time algorithms.
Nature Communications | 2016
Ugur Eskiocak; Vijayashree Ramesh; Jennifer G. Gill; Zhiyu Zhao; Stacy Yuan; Meng Wang; Travis Vandergriff; Mark Shackleton; Elsa Quintana; Timothy M. Johnson; Ralph J. DeBerardinis; Sean J. Morrison
New therapies are required for melanoma. Here, we report that multiple cardiac glycosides, including digitoxin and digoxin, are significantly more toxic to human melanoma cells than normal human cells. This reflects on-target inhibition of the ATP1A1 Na+/K+ pump, which is highly expressed by melanoma. MEK inhibitor and/or BRAF inhibitor additively or synergistically combined with digitoxin to induce cell death, inhibiting growth of patient-derived melanomas in NSG mice and synergistically extending survival. MEK inhibitor and digitoxin do not induce cell death in human melanocytes or haematopoietic cells in NSG mice. In melanoma, MEK inhibitor reduces ERK phosphorylation, while digitoxin disrupts ion gradients, altering plasma membrane and mitochondrial membrane potentials. MEK inhibitor and digitoxin together cause intracellular acidification, mitochondrial calcium dysregulation and ATP depletion in melanoma cells but not in normal cells. The disruption of ion homoeostasis in cancer cells can thus synergize with targeted agents to promote tumour regression in vivo.
Genes & Development | 2016
Robert A.J. Signer; Le Qi; Zhiyu Zhao; David Thompson; Alla A. Sigova; Zi Peng Fan; Richard A. Young; Nahum Sonenberg; Sean J. Morrison
Adult stem cells must limit their rate of protein synthesis, but the underlying mechanisms remain largely unexplored. Differences in protein synthesis among hematopoietic stem cells (HSCs) and progenitor cells did not correlate with differences in proteasome activity, total RNA content, mRNA content, or cell division rate. However, adult HSCs had more hypophosphorylated eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP2 as compared with most other hematopoietic progenitors. Deficiency for 4E-BP1 and 4E-BP2 significantly increased global protein synthesis in HSCs, but not in other hematopoietic progenitors, and impaired their reconstituting activity, identifying a mechanism that promotes HSC maintenance by attenuating protein synthesis.