Zhiyun Ye
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiyun Ye.
The EMBO Journal | 2004
Yanning Rui; Zhen Xu; Shu-Yong Lin; Qinxi Li; Hongliang Rui; Wen Luo; Hai Meng Zhou; Po Yan Cheung; Zhenguo Wu; Zhiyun Ye; Peng Li; Jiahuai Han; Sheng-Cai Lin
Axin and p53 are tumor suppressors, controlling cell growth, apoptosis, and development. We show that Axin interacts with homeodomain‐interacting protein kinase‐2 (HIPK2), which is linked to UV‐induced p53‐dependent apoptosis by interacting with, and phosphorylating Ser 46 of, p53. In addition to association with p53 via HIPK2, Axin contains a separate domain that directly interacts with p53 at their physiological concentrations. Axin stimulates p53‐dependent reporter transcription in 293 cells, but not in 293T, H1299, or SaOS‐2 cells that are defective in p53 signaling. Axin, but not AxinΔHIPK2, activates HIPK2‐mediated p53 phosphorylation at Ser 46, facilitating p53‐dependent transcriptional activity and apoptosis. Specific knockdown of Axin by siRNA reduced UV‐induced Ser‐46 phosphorylation and apoptosis. Kinase‐dead HIPK2 reduced Axin‐induced p53‐dependent transcriptional activity, indicating that Axin stimulates p53 function through HIPK2 kinase activity. Interestingly, HIPK2ΔAxin that lacks its Axin‐binding region acts as a dominant‐positive form in p53 activation, suggesting that the Axin‐binding region of HIPK2 is a putative autoinhibitory domain. These results show that Axin acts as a tumor suppressor by facilitating p53 function through integration of multiple factors.
Nature Chemical Biology | 2008
Yan-yan Zhan; Xiping Du; Hang-zi Chen; Jingjing Liu; Bi-xing Zhao; Danhong Huang; Gui-deng Li; Qingyan Xu; Mingqing Zhang; Bart C. Weimer; Dong Chen; Zhe Cheng; Lianru Zhang; Qinxi Li; Shaowei Li; Zhonghui Zheng; Siyang Song; Yaojian Huang; Zhiyun Ye; Wenjin Su; Sheng-Cai Lin; Yuemao Shen; Qiao Wu
Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B-dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1-/-) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.
Cell Metabolism | 2014
Chen-Song Zhang; Bin Jiang; Mengqi Li; Mingjiang Zhu; Yongying Peng; Yalin Zhang; Yu-Qing Wu; Terytty Yang Li; Yu Liang; Zailian Lu; Guili Lian; Qing Liu; Huiling Guo; Zhenyu Yin; Zhiyun Ye; Jiahuai Han; Jia-Wei Wu; Huiyong Yin; Shu-Yong Lin; Sheng-Cai Lin
AMPK and mTOR play principal roles in governing metabolic programs; however, mechanisms underlying the coordination of the two inversely regulated kinases remain unclear. In this study we found, most surprisingly, that the late endosomal/lysosomal protein complex v-ATPase-Ragulator, essential for activation of mTORC1, is also required for AMPK activation. We also uncovered that AMPK is a residential protein of late endosome/lysosome. Under glucose starvation, the v-ATPase-Ragulator complex is accessible to AXIN/LKB1 for AMPK activation. Concurrently, the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RAG is inhibited by AXIN, causing dissociation from endosome and inactivation of mTORC1. We have thus revealed that the v-ATPase-Ragulator complex is also an initiating sensor for energy stress and meanwhile serves as an endosomal docking site for LKB1-mediated AMPK activation by forming the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex, thereby providing a switch between catabolism and anabolism. Our current study also emphasizes a general role of late endosome/lysosome in controlling metabolic programs.
The EMBO Journal | 2006
Wei Liu; Hongliang Rui; Jifeng Wang; Shu-Yong Lin; Ying He; Mingliang Chen; Qinxi Li; Zhiyun Ye; Suping Zhang; Siu Chiu Chan; Ye-Guang Chen; Jiahuai Han; Sheng-Cai Lin
TGF‐β signaling involves a wide array of signaling molecules and multiple controlling events. Scaffold proteins create a functional proximity of signaling molecules and control the specificity of signal transduction. While many components involved in the TGF‐β pathway have been elucidated, little is known about how those components are coordinated by scaffold proteins. Here, we show that Axin activates TGF‐β signaling by forming a multimeric complex consisting of Smad7 and ubiquitin E3 ligase Arkadia. Axin depends on Arkadia to facilitate TGF‐β signaling, as their small interfering RNAs reciprocally abolished the stimulatory effect on TGF‐β signaling. Specific knockdown of Axin or Arkadia revealed that Axin and Arkadia cooperate with each other in promoting Smad7 ubiquitination. Pulse‐chase experiments further illustrated that Axin significantly decreased the half‐life of Smad7. Axin also induces nuclear export of Smad7. Interestingly, Axin associates with Arkadia and Smad7 independently of TGF‐β signal, in contrast to its transient association with inactive Smad3. However, coexpression of Wnt‐1 reduced Smad7 ubiquitination by downregulating Axin levels, underscoring the importance of Axin as an intrinsic regulator in TGF‐β signaling.
Cell Metabolism | 2013
Yalin Zhang; Huiling Guo; Chen-Song Zhang; Shu-Yong Lin; Zhenyu Yin; Yongying Peng; Hui Luo; Yuzhe Shi; Guili Lian; Cixiong Zhang; Mengqi Li; Zhiyun Ye; Jing Ye; Jiahuai Han; Peng Li; Jia-Wei Wu; Sheng-Cai Lin
The AMP-activated protein kinase (AMPK) is a master regulator of metabolic homeostasis by sensing cellular energy status. AMPK is mainly activated via phosphorylation by LKB1 when cellular AMP/ADP levels are increased. However, how AMP/ADP brings about AMPK phosphorylation remains unclear. Here, we show that it is AMP, but not ADP, that drives AXIN to directly tether LKB1 to phosphorylate AMPK. The complex formation of AXIN-AMPK-LKB1 is greatly enhanced in glucose-starved or AICAR-treated cells and in cell-free systems supplemented with exogenous AMP. Depletion of AXIN abrogated starvation-induced AMPK-LKB1 colocalization. Importantly, adenovirus-based knockdown of AXIN in the mouse liver impaired AMPK activation and caused exacerbated fatty liver after starvation, underscoring an essential role of AXIN in AMPK activation. These findings demonstrate an initiating role of AMP and demonstrate that AXIN directly transmits AMP binding of AMPK to its activation by LKB1, uncovering the mechanistic route for AMP to elicit AMPK activation by LKB1.
Nature Cell Biology | 2009
Qinxi Li; Shu-Yong Lin; Xuan Wang; Guili Lian; Zailian Lu; Huiling Guo; Ka Ruan; Yanhai Wang; Zhiyun Ye; Jiahuai Han; Sheng-Cai Lin
Cells can undergo either cell-cycle arrest or apoptosis after genotoxic stress, based on p53 activity. Here we show that cellular fate commitment depends on Axin forming distinct complexes with Pirh2, Tip60, HIPK2 and p53. In cells treated with sublethal doses of ultra-violet (UV) radiation or doxorubicin (Dox), Pirh2 abrogates Axin-induced p53 phosphorylation at Ser 46 catalysed by HIPK2, by competing with HIPK2 for binding to Axin. However, on lethal treatment, Tip60 interacts with Axin and abrogates Pirh2–Axin binding, forming an Axin–Tip60–HIPK2–p53 complex that allows maximal p53 activation to trigger apoptosis. We also provide evidence that the ATM/ATR pathway mediates the Axin–Tip60 complex assembly. An axin mutation promotes carcinogenesis in AxinFu/+ (Axin-Fused) mice, consistent with a dominant-negative role for AxinFu in p53 activation. Thus, Axin is a critical determinant in p53-dependent tumour suppression in which Pirh2 and Tip60 have different roles in triggering cell-cycle arrest or apoptosis depending on the severity of genotoxic stress.
Cancer Research | 2007
Qinxi Li; Xuan Wang; Xiaoling Wu; Yanning Rui; Wei Liu; Jifeng Wang; Xinghao Wang; Yih-Cherng Liou; Zhiyun Ye; Sheng-Cai Lin
Daxx, a death domain-associated protein, has been implicated in proapoptosis, antiapoptosis, and transcriptional regulation. Many factors known to play critically important roles in controlling apoptosis and gene transcription have been shown to associate with Daxx, including the Ser/Thr protein kinase HIPK2, promyelocytic leukemia protein, histone deacetylases, and the chromatin remodeling protein ATRX. Although it is clear that Daxx may exert multiple functions, the underlying mechanisms remain far from clear. Here, we show that Axin, originally identified for its scaffolding role to control beta-catenin levels in Wnt signaling, strongly associates with Daxx at endogenous levels. The Daxx/Axin complex formation is enhanced by UV irradiation. Axin tethers Daxx to the tumor suppressor p53, and cooperates with Daxx, but not DaxxDeltaAxin, which is unable to interact with Axin, to stimulate HIPK2-mediated Ser(46) phosphorylation and transcriptional activity of p53. Interestingly, Axin and Daxx seem to selectively activate p53 target genes, with strong activation of PUMA, but not p21 or Bax. Daxx-stimulated p53 transcriptional activity was significantly diminished by small interfering RNA against Axin; Daxx fails to inhibit colony formation in Axin(-/-) cells. Moreover, UV-induced cell death was attenuated by the knockdown of Axin and Daxx. All these results show that Daxx cooperates with Axin to stimulate p53, and implicate a direct role for Axin, HIPK2, and p53 in the proapoptotic function of Daxx. We have hence unraveled a novel aspect of p53 activation and shed new light on the ultimate understanding of the Daxx protein, perhaps most pertinently, in relation to stress-induced cell death.
Nature | 2017
Chen-Song Zhang; Simon A. Hawley; Yue Zong; Mengqi Li; Zhichao Wang; Alexander Gray; Teng Ma; Jiwen Cui; Jin-Wei Feng; Mingjiang Zhu; Yu-Qing Wu; Terytty Yang Li; Zhiyun Ye; Shu-Yong Lin; Huiyong Yin; Hailong Piao; D. Grahame Hardie; Sheng-Cai Lin
The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.
Journal of Biological Chemistry | 2003
Wen Luo; Wilson W. Ng; Lihua Jin; Zhiyun Ye; Jiahuai Han; Sheng-Cai Lin
Axin is a multidomain protein that plays a critical role in Wnt signaling, serving as a scaffold for down-regulation of β-catenin. It also activates the JNK mitogen-activated protein kinase by binding to MEKK1. However, it is intriguing that Axin requires several additional elements for JNK activation, including a requirement for homodimerization, sumoylation at the extreme C-terminal sites, and a region in the protein phosphatase 2A-binding domain. In our present study, we have shown that another MEKK family member, MEKK4, also binds to Axin in vivo and mediates Axin-induced JNK activation. Surprisingly MEKK4 binds to a region distinct from the MEKK1-binding site. Dominant negative mutant of MEKK4 attenuates the JNK activation by Axin. Activation of JNK by Axin in MEKK1–/– mouse embryonic fibroblast cells supports the idea that another MEKK can mediate Axin-induced JNK activation. Expression of specific small interfering RNA against MEKK4 effectively attenuates JNK activation by the MEKK1 binding-defective Axin mutant in 293T cells and inhibits JNK activation by wild-type Axin in MEKK1–/– cells, confirming that MEKK4 is indeed another mitogen-activated protein kinase kinase kinase that is specifically involved in Axin-mediated JNK activation independently of MEKK1. We have also identified an additional domain between MEKK1- and MEKK4-binding sites as being required for JNK activation by Axin. MEKK1 and MEKK4 compete for Axin binding even though they bind to sites far apart, suggesting that Axin may selectively bind to MEKK1 or MEKK4 depending on distinct signals or cellular context. Our findings will provide new insights into how scaffold proteins mediate ultimate activation of different mitogen-activated protein kinase kinase kinases.
International Journal of Cancer | 2003
Lihua Jin; Qiu-Jie Shao; Wen Luo; Zhiyun Ye; Qing Li; Sheng-Cai Lin
Axin is a recently identified tumor suppressor that plays an important role in liver and colon cancers. To gain further insights into the structure and function of Axin in controlling cell growth, we analyzed 54 colorectal cancer tissues for mutations in AXIN1 gene. We employed PCR amplification with 23 sets of primers against introns that encompassed the whole coding region of AXIN1 followed by single‐strand conformation polymorphism (SSCP) analysis. After subcloning and sequencing analysis of the reamplified DNA from the aberrant bands, we found, in addition to 3 silent mutations, 6 misssense point mutations in different functionally important regions. The missense mutation rate is hence 11%, suggesting that Axin deficiency may contribute to the onset of colorectal tumorigenesis.