Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhizhuang Joe Zhao is active.

Publication


Featured researches published by Zhizhuang Joe Zhao.


Journal of Biological Chemistry | 2005

Identification of an Acquired JAK2 Mutation in Polycythemia Vera

Runxiang Zhao; Shu Xing; Zhe Li; Xueqi Fu; Qingshan Li; Sanford B. Krantz; Zhizhuang Joe Zhao

Polycythemia vera (PV) is a human clonal hematological disorder. The molecular etiology of the disease has not been identified. PV hematopoietic progenitor cells exhibit hypersensitivity to growth factors and cytokines, suggesting possible abnormalities in protein-tyrosine kinases and phosphatases. By sequencing the entire coding regions of cDNAs of candidate enzymes, we identified a G:C→ T:A point mutation of the JAK2 tyrosine kinase in 20 of 24 PV blood samples but none in 12 normal samples. The mutation has varying degrees of heterozygosity and is apparently acquired. It changes conserved Val617 to Phe in the pseudokinase domain of JAK2 that is known to have an inhibitory role. The mutant JAK2 has enhanced kinase activity, and when overexpressed together with the erythropoietin receptor in cells, it caused hyperactivation of erythropoietin-induced cell signaling. This gain-of-function mutation of JAK may explain the hypersensitivity of PV progenitor cells to growth factors and cytokines. Our study thus defines a molecular defect of PV.


Nature Medicine | 2013

CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress

Andrew Chow; Matthew Huggins; Jalal Ahmed; Daigo Hashimoto; Daniel Lucas; Yuya Kunisaki; Sandra Pinho; Marylene Leboeuf; Clara Noizat; Nico van Rooijen; Masato Tanaka; Zhizhuang Joe Zhao; Aviv Bergman; Miriam Merad; Paul S. Frenette

The role of macrophages in erythropoiesis was suggested several decades ago with the description of “erythroblastic islands” in the bone marrow (BM) composed of a central macrophage surrounded by developing erythroblasts. However, the in vivo role of macrophages in erythropoiesis under homeostasis or disease remains unclear. Specific depletion of CD169+ macrophages markedly reduced erythroblasts in the BM but did not result in overt anemia under homeostasis likely due to concomitant alterations in RBC clearance. However, CD169+ macrophage depletion significantly impaired erythropoietic recovery from hemolytic anemia, acute blood loss and myeloablation. Furthermore, macrophage depletion normalized the erythroid compartment in a JAK2V617F-driven murine model of polycythemia vera (PV), suggesting that erythropoiesis in PV, unexpectedly, remains under the control of macrophages in the BM and splenic microenvironments. These data indicate that CD169+ macrophages promote late erythroid maturation and that modulation of the macrophage compartment represents a novel strategy to treat erythropoietic disorders.A role for macrophages in erythropoiesis was suggested several decades ago when erythroblastic islands in the bone marrow, composed of a central macrophage surrounded by developing erythroblasts, were described. However, the in vivo role of macrophages in erythropoiesis under homeostatic conditions or in disease remains unclear. We found that specific depletion of CD169+ macrophages markedly reduced the number of erythroblasts in the bone marrow but did not result in overt anemia under homeostatic conditions, probably because of concomitant alterations in red blood cell clearance. However, CD169+ macrophage depletion significantly impaired erythropoietic recovery from hemolytic anemia, acute blood loss and myeloablation. Furthermore, macrophage depletion normalized the erythroid compartment in a JAK2V617F-driven mouse model of polycythemia vera, suggesting that erythropoiesis in polycythemia vera remains under the control of macrophages in the bone marrow and splenic microenvironments. These results indicate that CD169+ macrophages promote late erythroid maturation and that modulation of the macrophage compartment may be a new strategy to treat erythropoietic disorders.


Blood | 2008

Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice

Shu Xing; Tina Ho Wanting; Wanming Zhao; Junfeng Ma; Shaofeng Wang; Xuesong Xu; Qingshan Li; Xueqi Fu; Mingjiang Xu; Zhizhuang Joe Zhao

The JAK2(V617F) mutation was found in most patients with myeloproliferative disorders (MPDs), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. We have generated transgenic mice expressing the mutated enzyme in the hematopoietic system driven by a vav gene promoter. The mice are viable and fertile. One line of the transgenic mice, which expressed a lower level of JAK2(V617F), showed moderate elevations of blood cell counts, whereas another line with a higher level of JAK2(V617F) expression displayed marked increases in blood counts and developed phenotypes that closely resembled human essential thrombocythemia and polycythemia vera. The latter line of mice also developed primary myelofibrosis-like symptoms as they aged. The transgenic mice showed erythroid, megakaryocytic, and granulocytic hyperplasia in the bone marrow and spleen, displayed splenomegaly, and had reduced levels of plasma erythropoietin and thrombopoietin. They possessed an increased number of hematopoietic progenitor cells in peripheral blood, spleen, and bone marrow, and these cells formed autonomous colonies in the absence of growth factors and cytokines. The data show that JAK2(V617F) can cause MPDs in mice. Our study thus provides a mouse model to study the pathologic role of JAK2(V617F) and to develop treatment for MPDs.


Journal of Biological Chemistry | 2006

Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth.

Zhe Li; Mingjiang Xu; Shu Xing; Wanting Tina Ho; Takefumi Ishii; Qingshan Li; Xueqi Fu; Zhizhuang Joe Zhao

JAK2V617F, a mutant of tyrosine kinase JAK2, is found in most patients with polycythemia vera (PV) and a substantial proportion of patients with idiopathic myelofibrosis or essential thrombocythemia. The JAK2 mutant displays a much increased kinase activity and generates a PV-like phenotype in mouse bone marrow transplant models. This study shows that the anti-cancer drug erlotinib (Tarceva™) is a potent inhibitor of JAK2V617F activity. In vitro colony culture assays revealed that erlotinib at micro-molar concentrations effectively suppresses the growth and expansion of PV hematopoietic progenitor cells while having little effect on normal cells. Furthermore, JAK2V617F-positive cells from PV patients show greater susceptibility to the inhibitor than their negative counterparts. Similar inhibitory effects were found with the JAK2V617F-positive human erythroleukemia HEL cell line. These data suggest that erlotinib may be used for treatment of JAK2V617F-positive PV and other myeloproliferative disorders.


Journal of Biological Chemistry | 2006

MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27.

Chunlei Zheng; Ziyang Lin; Zhizhuang Joe Zhao; Yajun Yang; Hanben Niu; Xun Shen

The p38 MAPK and heat shock protein 27 (hsp27) form a signaling complex with serine/threonine kinase Akt and MAPK-activated protein kinase-2 (MK2), which plays an important role in controlling stress-induced apoptosis and reorganizing actin cytoskeleton. However, regulation of the complex is poorly understood. In this study, the interaction between p38 and hsp27 was visualized in single living L929 cells using fluorescence resonance energy transfer technology, while their association with Akt was examined by immunoprecipitation analysis. Under normal growth conditions, p38 kinase constitutively interacts with hsp27. When cells were exposed to H2O2 or stimulated by arachidonic acid, this interaction was disrupted. However, inhibition of the activation of p38 and Akt by selective inhibitors or overexpression of the kinase-dead mutant of p38 diminished such effects. Furthermore, mutation of phosphorylation sites of hsp27 renders the interaction resistant to H2O2 and arachidonic acid. It was interesting to find that the interaction disappeared in the cells from MK2-knock-out mice or the cells treated with lemptomycin B that blocks export of MK2 from nucleus to cytosol. However, MK2 is not required for the association of hsp27 with Akt. This study suggests that MK2 mediates the incorporation of p38 into the pre-existing complex of hsp27 with Akt. Phosphorylation of hsp27 finally breaks the signaling complex.


British Journal of Haematology | 2000

Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways

Xingwei Sui; Sanford B. Krantz; Zhizhuang Joe Zhao

Erythropoietin (EPO) and stem cell factor (SCF) are two important factors in human erythropoiesis. We have recently demonstrated that SCF and EPO synergistically activate mitogen‐activated protein (MAP) kinase, thereby promoting growth of human erythroid colony‐forming cells (ECFCs). In the present study, we have examined the intracellular mechanisms by which SCF and EPO maintain survival of these cells. In the absence of SCF and EPO, human ECFCs underwent rapid apoptosis. The process was significantly inhibited by addition of a single factor and was totally prevented in the presence of both factors. Treatment of ECFCs with wortmannin, a specific inhibitor of phosphoinositide 3‐kinase (PI3K), inhibited the antiapoptotic effect of SCF but had no effect on that of EPO, indicating that SCF but not EPO inhibits apoptosis through the PI3K pathway. In contrast, treatment of ECFCs with PD98059, a specific inhibitor of MAP kinase/ERK kinase (MEK), inhibited cell growth but had no effect on the antiapoptotic activity of either SCF or EPO, suggesting that SCF and EPO prevent apoptosis of human ECFCs independent of the extracellular signal‐regulated kinase (ERK) pathway. Interestingly, both EPO and SCF induced activation of PI3K. However, through PI3K, SCF caused activation of protein kinase B (PKB), an anti‐apoptosis signal, whereas EPO led to activation of ERKs. Furthermore, the SCF‐ and EPO‐maintained expression of antiapoptotic protein Bcl‐XL was correlated with the activation of ERKs and was inhibited by PD98059, suggesting that Bcl‐XL may not have a major role in preventing apoptosis of human ECFCs. Phosphorylated BAD was not affected by SCF, EPO or wortmannin. Taken together with our previous results, the present study indicates that SCF and EPO support survival and growth of human ECFCs through different signalling pathways and that they transduce distinctly different signals through activation of PI3K.


Journal of Biological Chemistry | 2000

Structural Basis for Substrate Specificity of Protein-tyrosine Phosphatase SHP-1

Jian Yang; Zhiliang Cheng; Tianqi Niu; Xiaoshan Liang; Zhizhuang Joe Zhao; G. Wayne Zhou

The substrate specificity of the catalytic domain of SHP-1, an important regulator in the proliferation and development of hematopoietic cells, is critical for understanding the physiological functions of SHP-1. Here we report the crystal structures of the catalytic domain of SHP-1 complexed with two peptide substrates derived from SIRPα, a member of the signal-regulatory proteins. We show that the variable β5-loop-β6 motif confers SHP-1 substrate specificity at the P-4 and further N-terminal subpockets. We also observe a novel residue shift at P-2, the highly conserved subpocket in protein- tyrosine phosphatases. Our observations provide new insight into the substrate specificity of SHP-1.


Breast Cancer Research | 2016

Plasma exosome microRNAs are indicative of breast cancer

Bethany N. Hannafon; Yvonne D. Trigoso; Cameron L. Calloway; Y. Daniel Zhao; David H. Lum; Alana L. Welm; Zhizhuang Joe Zhao; Kenneth E. Blick; William C. Dooley; Wei-Qun Ding

BackgroundmicroRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring.MethodsExosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis.ResultsSmall RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels.ConclusionsOur results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.


Journal of Biological Chemistry | 1998

Purification and Cloning of PZR, a Binding Protein and Putative Physiological Substrate of Tyrosine Phosphatase SHP-2

Zhizhuang Joe Zhao; Runxiang Zhao

Overexpression of a catalytically inactive mutant of tyrosine phosphatase SHP-2 in 293 cells resulted in hyperphosphorylation of a glycoprotein specifically associated with the enzyme. The protein has been purified to near homogeneity. Based on the amino acid sequences of peptides obtained from the protein, a full-length cDNA was isolated. The cDNA encodes a protein with a single transmembrane segment and a signal sequence. The extracellular portion of the protein contains a single immunoglobulin-like domain displaying 46% sequence identity to that of myelin P0, a major structural protein of peripheral myelin. The intracellular segment of the protein shows no significant sequence identity to any known protein except for two immunoreceptor tyrosine-based inhibitory motifs. We name the protein PZR for protein zero related. Transfection of the PZR cDNA in Jurkat cells gave rise to a protein of expected molecular size. Stimulation of cells with pervanadate resulted in tyrosine phosphorylation of PZR and a near-stoichiometric association of PZR with SHP-2. Northern blotting analyses revealed that PZR is widely expressed in human tissues and is particularly abundant in heart, placenta, kidney, and pancreas. As a binding protein and a putative substrate of SHP-2, PZR protein may have an important role in cell signaling.


Journal of Biological Chemistry | 2010

Protein-tyrosine Phosphatase PTPN9 Negatively Regulates ErbB2 and Epidermal Growth Factor Receptor Signaling in Breast Cancer Cells

Taichang Yuan; Yongping Wang; Zhizhuang Joe Zhao; Haihua Gu

ErbB family of the receptor protein-tyrosine kinase plays an important role in the progression of human cancers including breast cancer. Finding protein-tyrosine phosphatase (PTPs) that can specifically regulate the function of ErbB should help design novel therapies for treatment. By performing a small interfering RNA screen against 43 human PTPs, we find that knockdown of protein-tyrosine phosphatase PTPN9 significantly increases ErbB2 tyrosyl phosphorylation in the SKBR3 breast cancer cell line. In addition, knockdown of PTPN9 expression also enhances tyrosyl phosphorylation of the ErbB1/epidermal growth factor receptor (EGFR) in the MDA-MB-231 breast cancer cell line. Conversely, increasing expression of PTPN9 wild type (WT) inhibits tyrosyl phosphorylation of ErbB2 and EGFR. To test whether ErbB2 and EGFR are substrates of PTPN9, PTPN9 WT, and a substrate trapping mutant (PTPN9 DA) are overexpressed in SKBR3 and MDA-MB-231 cells. Compared with vector control, expression of PTPN9 WT significantly inhibits whereas expression of PTPN9 DA dramatically enhances tyrosyl phosphorylation of ErbB2 and EGFR, respectively. In contrast, expression of PTPN9 WT or DA mutant does not affect tyrosyl phosphorylation of ErbB3 and Shc. Importantly, coimmunoprecipitation and glutathione S-transferase fusion protein pulldown experiments show that tyrosol-phosphorylated ErbB2 or EGFR is preferentially associated with PTPN9 DA compared with PTPN9 WT, indicating that ErbB2 and EGFR are substrates of PTPN9. Furthermore, PTPN9 WT expression specifically impairs EGF-induced STAT3 and STAT5 activation, and inhibits the cell growth in soft agar. Last, PTPN9 WT expression also reduces invasion and MMP2 expression of MDA-MB-231 cells. Our data suggest PTPN9 as a negative regulator of breast cancer cells by targeting ErbB2 and EGFR and inhibiting STAT activation.

Collaboration


Dive into the Zhizhuang Joe Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanke Zhao

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Wanting Tina Ho

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanming Zhao

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Wayne Zhou

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge