Zhonghui Xu
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhonghui Xu.
The FASEB Journal | 2014
Krishna Rao Maddipati; Roberto Romero; Tinnakorn Chaiworapongsa; Sen Lin Zhou; Zhonghui Xu; Adi L. Tarca; Juan Pedro Kusanovic; H. Muñoz; Kenneth V. Honn
Lipid mediators play an important role in reproductive biology, especially, in parturition. Enhanced biosynthesis of eicosanoids, such as prostaglandin E2 (PGE2) and PGF2α, precedes the onset of labor as a result of increased expression of inducible cyclooxygenase 2 (COX‐2) in placental tissues. Metabolism of arachidonic acid results in bioactive lipid mediators beyond prostaglandins that could significantly influence myometrial activity. Therefore, an unbiased lipidomic approach was used to profile the arachidonic acid metabolome of amniotic fluid. In this study, liquid chromatography‐mass spectrometry was used for the first time to quantitate these metabolites in human amniotic fluid by comparing patients at midtrimester, at term but not in labor, and at term and in spontaneous labor. In addition to exposing novel aspects of COX pathway metabolism, this lipidomic study revealed a dramatic increase in epoxygenase‐ and lipoxygenasepathway‐derived lipid mediators in spontaneous labor with remarkable product selectivity. Despite their recognition as anti‐inflammatory lipid mediators and regulators of ion channels, little is known about the epoxygenase pathway in labor. Epoxygenase pathway metabolites are established regulators of vascular homeostasis in cardiovascular and renal physiology. Their presence as the dominant lipid mediators in spontaneous labor at term portends a yet undiscovered physiological function in parturition.—Maddipati, K. R., Romero, R., Chaiworapongsa, T., Zhou, S.‐L., Xu, Z., Tarca, A. L., Kusanovic, J. P., Munoz, H., Honn, K. V., Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J. 28, 4835–4846 (2014). www.fasebj.org
Journal of Perinatal Medicine | 2015
Roberto Romero; Piya Chaemsaithong; Steven J. Korzeniewski; Adi L. Tarca; Gaurav Bhatti; Zhonghui Xu; Juan Pedro Kusanovic; Zhong Dong; Nikolina Docheva; Alicia Martinez-Varea; Bo Hyun Yoon; Sonia S. Hassan; Tinnakorn Chaiworapongsa; Lami Yeo
Abstract Objective: Recent studies indicate that clinical chorioamnionitis is a heterogeneous condition and only approximately one-half of the patients have bacteria in the amniotic cavity, which is often associated with intra-amniotic inflammation. The objective of this study is to characterize the nature of the inflammatory response within the amniotic cavity in patients with clinical chorioamnionitis at term according to the presence or absence of 1) bacteria in the amniotic cavity and 2) intra-amniotic inflammation. Materials and methods: A retrospective cross-sectional case-control study was conducted to examine cytokine and chemokine concentrations in the amniotic fluid (AF). Cases consisted of women with clinical chorioamnionitis at term (n=45). Controls were women with uncomplicated pregnancies at term who did not have intra-amniotic inflammation and were in labor (n=24). Women with clinical chorioamnionitis were classified according to the results of AF cultures, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry, and AF concentration of interleukin-6 (IL-6) into those: 1) without intra-amniotic inflammation, 2) with microbial-associated intra-amniotic inflammation, and 3) with intra-amniotic inflammation without detectable bacteria. The AF concentrations of 29 cytokines/chemokines were determined using sensitive and specific V-PLEX immunoassays. Results: 1) The AF concentrations of pro- and anti-inflammatory cytokines/chemokines such as interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin-4 (IL-4), macrophage inflammatory protein-1 beta (MIP-1β), and interleukin-8 (IL-8) (except Eotaxin-3) were significantly higher in women with clinical chorioamnionitis at term than in controls (term labor without intra-amniotic inflammation); 2) patients with microbial-associated intra-amniotic inflammation, and those with intra-amniotic inflammation without detectable bacteria, had a dramatic differential expression of cytokines and chemokines in AF compared to patients with spontaneous labor without intra-amniotic inflammation. However, no difference could be detected in the pattern of the intra-amniotic inflammatory response between patients with intra-amniotic inflammation with and without detectable bacteria; and 3) in patients with clinical chorioamnionitis at term but without intra-amniotic inflammation, the behavior of cytokines and chemokines in the AF was similar to those in spontaneous labor at term. Conclusions: Patients with clinical chorioamnionitis who had microbial-associated intra-amniotic inflammation or intra-amniotic inflammation without detectable bacteria had a dramatic upregulation of the intra-amniotic inflammatory response assessed by amniotic fluid concentrations of cytokines. A subset of patients with term clinical chorioamnionitis does not have intra-amniotic infection/inflammation, as demonstrated by elevated AF concentrations of inflammation-related proteins, when compared to women in term labor with uncomplicated pregnancies, suggesting over-diagnosis. These observations constitute the first characterization of the cytokine/chemokine network in the amniotic cavity of patients with clinical chorioamnionitis at term.
American Journal of Obstetrics and Gynecology | 2015
Roberto Romero; Jean-Charles Grivel; Adi L. Tarca; Piya Chaemsaithong; Zhonghui Xu; Wendy Fitzgerald; Sonia S. Hassan; Tinnakorn Chaiworapongsa; Leonid Margolis
OBJECTIVE Intraamniotic inflammation/infection is the only mechanism of disease with persuasive evidence of causality for spontaneous preterm labor/delivery. Previous studies about the behavior of cytokines in preterm labor have been largely based on the analysis of the behavior of each protein independently. Emerging evidence indicates that the study of biologic networks can provide insight into the pathobiology of disease and improve biomarker discovery. The goal of this study was to characterize the inflammatory-related protein network in the amniotic fluid of patients with preterm labor. STUDY DESIGN A retrospective cohort study was conducted that included women with singleton pregnancies who had spontaneous preterm labor and intact membranes (n = 135). These patients were classified according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry, and amniotic fluid concentration of interleukin (IL)-6 into the following groups: (1) those without intraamniotic inflammation (n = 85), (2) those with microbial-associated intraamniotic inflammation (n = 15), and (3) those with intraamniotic inflammation without detectable bacteria (n = 35). Amniotic fluid concentrations of 33 inflammatory-related proteins were determined with the use of a multiplex bead array assay. RESULTS Patients with preterm labor and intact membranes who had microbial-associated intraamniotic inflammation had a higher amniotic fluid inflammatory-related protein concentration correlation than those without intraamniotic inflammation (113 perturbed correlations). IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, and IL-1α were the most connected nodes (highest degree) in this differential correlation network (degrees of 20, 16, 12, and 12, respectively). Patients with sterile intraamniotic inflammation had correlation patterns of inflammatory-related proteins, both increased and decreased, when compared to those without intraamniotic inflammation (50 perturbed correlations). IL-1α, MIP-1α, and IL-1β were the most connected nodes in this differential correlation network (degrees of 12, 10, and 7, respectively). There were more coordinated inflammatory-related protein concentrations in the amniotic fluid of women with microbial-associated intraamniotic inflammation than in those with sterile intraamniotic inflammation (60 perturbed correlations), with IL-4 and IL-33 having the largest number of perturbed correlations (degrees of 15 and 13, respectively). CONCLUSIONS We report for the first time an analysis of the inflammatory-related protein network in spontaneous preterm labor. Patients with preterm labor and microbial-associated intraamniotic inflammation had more coordinated amniotic fluid inflammatory-related proteins than either those with sterile intraamniotic inflammation or those without intraamniotic inflammation. The correlations were also stronger in patients with sterile intraamniotic inflammation than in those without intraamniotic inflammation. The findings herein could be of value in the development of biomarkers of preterm labor.
Journal of Immunology | 2016
Yi Xu; Roberto Romero; Derek Miller; Leena Kadam; Tara N. Mial; Olesya Plazyo; Valeria Garcia-Flores; Sonia S. Hassan; Zhonghui Xu; Adi L. Tarca; Sascha Drewlo; Nardhy Gomez-Lopez
Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator–activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.
American Journal of Reproductive Immunology | 2018
Roberto Romero; Yi Xu; Olesya Plazyo; Piya Chaemsaithong; Tinnakorn Chaiworapongsa; Ronald Unkel; Nandor Gabor Than; Po Jen Chiang; Zhong Dong; Zhonghui Xu; Adi L. Tarca; Vikki M. Abrahams; Sonia S. Hassan; Lami Yeo; Nardhy Gomez-Lopez
Inflammasomes are signaling platforms that, upon sensing pathogens and sterile stressors, mediate the release of mature forms of interleukin (IL)‐1β and IL‐18. The aims of this study were to determine (i) the expression of major inflammasome components in the chorioamniotic membranes in spontaneous labor at term, (ii) whether there are changes in the inflammasome components associated with the activation of caspase‐1 and caspase‐4, and (iii) whether these events are associated with the release of the mature forms of IL‐1β and IL‐18.
Journal of Immunology | 2016
Derek St Louis; Roberto Romero; Olesya Plazyo; Marcia Arenas-Hernandez; Bogdan Panaitescu; Yi Xu; Tatjana Milovic; Zhonghui Xu; Gaurav Bhatti; Qing Sheng Mi; Sascha Drewlo; Adi L. Tarca; Sonia S. Hassan; Nardhy Gomez-Lopez
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. Although intra-amniotic infection is a recognized cause of spontaneous preterm labor, the noninfection-related etiologies are poorly understood. In this article, we demonstrated that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induced late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer–induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. Peroxisome proliferator–activated receptor (PPAR)γ activation, through rosiglitazone treatment, reduced the rate of α-GalCer–induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation, as shown by the downregulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4+ T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils, and mature dendritic cells to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also upregulated the expression of inflammatory genes at the maternal–fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with noninfection-related preterm labor/birth. Collectively, these results demonstrate that iNKT cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for prevention of this syndrome.
Journal of Perinatal Medicine | 2015
Roberto Romero; Piya Chaemsaithong; Nikolina Docheva; Steven J. Korzeniewski; Adi L. Tarca; Gaurav Bhatti; Zhonghui Xu; Juan Pedro Kusanovic; Noppadol Chaiyasit; Zhong Dong; Bo Hyun Yoon; Sonia S. Hassan; Tinnakorn Chaiworapongsa; Lami Yeo; Yeon Mee Kim
Abstract Objective: Microbial invasion of the fetus due to intra-amniotic infection can lead to a systemic inflammatory response characterized by elevated concentrations of cytokines in the umbilical cord plasma/serum. Clinical chorioamnionitis represents the maternal syndrome often associated with intra-amniotic infection, although other causes of this syndrome have been recently described. The objective of this study was to characterize the umbilical cord plasma cytokine profile in neonates born to mothers with clinical chorioamnionitis at term, according to the presence or absence of bacteria and/or intra-amniotic inflammation. Materials and methods: A cross-sectional study was conducted, including patients with clinical chorioamnionitis at term (n=38; cases) and those with spontaneous term labor without clinical chorioamnionitis (n=77; controls). Women with clinical chorioamnionitis were classified according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) and amniotic fluid interleukin (IL)-6 concentration into three groups: 1) no intra-amniotic inflammation; 2) intra-amniotic inflammation without detectable microorganisms; or 3) microbial-associated intra-amniotic inflammation. A fetal inflammatory response syndrome (FIRS) was defined as an umbilical cord plasma IL-6 concentration >11 pg/mL. The umbilical cord plasma concentrations of 29 cytokines were determined with sensitive and specific V-PLEX immunoassays. Nonparametric statistical methods were used for analysis, adjusting for a false discovery rate of 5%. Results: 1) Neonates born to mothers with clinical chorioamnionitis at term (considered in toto) had significantly higher median umbilical cord plasma concentrations of IL-6, IL-12p70, IL-16, IL-13, IL-4, IL-10 and IL-8, but significantly lower interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF)-α concentrations than neonates born to mothers with spontaneous term labor without clinical chorioamnionitis; 2) neonates born to mothers with clinical chorioamnionitis at term but without intra-amniotic inflammation had higher concentrations of IL-6, IL-12p70, IL-13, IL-4, IL-5, and IL-8, but lower IFN-γ, than neonates not exposed to clinical chorioamnionitis, suggesting that maternal fever in the absence of intra-amniotic inflammation leads to a change in the fetal cytokine network; 3) there were significant, positive correlations between maternal and umbilical cord plasma IL-6 and IL-8 concentrations (IL-6: Spearman correlation=0.53; P<0.001; IL-8: Spearman correlation=0.42; P<0.001), consistent with placental transfer of cytokines; 4) an elevated fetal plasma IL-6 (>11 pg/mL), the diagnostic criterion for FIRS, was present in 21% of cases (8/38), and all these neonates were born to mothers with proven intra-amniotic infection; and 5) FIRS was associated with a high concentration of umbilical cord plasma IL-8, IL-10 and monocyte chemoattractant protein (MCP)-1. Conclusions: Neonates born to mothers with clinical chorioamnionitis at term had higher concentrations of umbilical cord plasma cytokines than those born to mothers without clinical chorioamnionitis. Even neonates exposed to clinical chorioamnionitis but not to intra-amniotic inflammation had elevated concentrations of multiple cytokines, suggesting that intrapartum fever alters the fetal immune response.
Journal of Perinatal Medicine | 2015
Roberto Romero; Piya Chaemsaithong; Nikolina Docheva; Steven J. Korzeniewski; Adi L. Tarca; Gaurav Bhatti; Zhonghui Xu; Juan Pedro Kusanovic; Zhong Dong; Noppadol Chaiyasit; Ahmed I. Ahmed; Bo Hyun Yoon; Sonia S. Hassan; Tinnakorn Chaiworapongsa; Lami Yeo
Abstract Introduction: Fever is a major criterion for clinical chorioamnionitis; yet, many patients with intrapartum fever do not have demonstrable intra-amniotic infection. Some cytokines, such as interleukin (IL)-1, IL-6, interferon-gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α), can induce a fever. The objective of this study was to determine whether maternal plasma concentrations of cytokines could be of value in the identification of patients with the diagnosis of clinical chorioamnionitis at term who have microbial-associated intra-amniotic inflammation. Methods: A retrospective cross-sectional study was conducted, including patients with clinical chorioamnionitis at term (n=41; cases) and women in spontaneous labor at term without clinical chorioamnionitis (n=77; controls). Women with clinical chorioamnionitis were classified into three groups according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), and amniotic fluid IL-6 concentration: 1) no intra-amniotic inflammation; 2) intra-amniotic inflammation without detectable microorganisms; or 3) microbial-associated intra-amniotic inflammation. The maternal plasma concentrations of 29 cytokines were determined with sensitive and specific V-PLEX immunoassays. Nonparametric statistical methods were used for analysis, adjusting for a false discovery rate of 5%. Results: 1) The maternal plasma concentrations of pyrogenic cytokines (IL-1β, IL-2, IL-6, IFN-γ, and TNF-α) were significantly higher in patients with clinical chorioamnionitis at term than in those with spontaneous term labor without clinical chorioamnionitis; 2) the maternal plasma concentrations of cytokines were not significantly different among the three subgroups of patients with clinical chorioamnionitis (intra-amniotic inflammation with and without detectable bacteria and those without intra-amniotic inflammation); and 3) among women with the diagnosis of clinical chorioamnionitis, but without evidence of intra-amniotic inflammation, the maternal plasma concentrations of pyrogenic cytokines were significantly higher than in patients with spontaneous labor at term. These observations suggest that a fever can be mediated by increased circulating concentrations of these cytokines, despite the absence of a local intra-amniotic inflammatory response. Conclusions: 1) The maternal plasma concentrations of pyrogenic cytokines (e.g. IL-1β, IL-2, IL-6, IFN-γ, and TNF-α) are higher in patients with intra-partum fever and the diagnosis of clinical chorioamnionitis at term than in those in spontaneous labor at term without a fever; and 2) maternal plasma cytokine concentrations have limited value in the identification of patients with bacteria in the amniotic cavity. Accurate assessment of the presence of intra-amniotic infection requires amniotic fluid analysis.
Journal of Maternal-fetal & Neonatal Medicine | 2013
Vanessa Topping; Roberto Romero; Nandor Gabor Than; Adi L. Tarca; Zhonghui Xu; Sun Young Kim; Bing Wang; Lami Yeo; Chong Jai Kim; Sonia S. Hassan; Jung-Sun Kim
Objective: Interleukin-33 (IL-33) is the newest member of the IL-1 cytokine family, a group of key regulators of inflammation. The purpose of this study was to determine whether IL-33 is expressed in the human placenta and to investigate its expression in the context of acute and chronic chorioamnionitis. Methods: Placental tissues were obtained from five groups of patients: 1) normal pregnancy at term without labor (n = 10); 2) normal pregnancy at term in labor (n = 10); 3) preterm labor without inflammation (n = 10); 4) preterm labor with acute chorioamnionitis and funisitis (n = 10); and 5) preterm labor with chronic chorioamnionitis (n = 10). Immunostaining was performed to determine IL-33 protein expression patterns in the placental disk, chorioamniotic membranes, and umbilical cord. mRNA expression of IL-33 and its receptor IL1RL1 (ST2) was measured in primary amnion epithelial and mesenchymal cells (AECs and AMCs, n = 4) and human umbilical vein endothelial cells (HUVECs, n = 4) treated with IL-1β (1 and 10 ng/ml) and CXCL10 (0.5 and 1 or 5 ng/ml). Results: 1) Nuclear IL-33 expression was found in endothelial and smooth muscle cells in the placenta, chorioamniotic membranes, and umbilical cord; 2) IL-33 was detected in the nucleus of CD14+ macrophages in the chorioamniotic membranes, chorionic plate, and umbilical cord, and in the cytoplasm of myofibroblasts in the Wharton’s jelly; 3) acute (but not chronic) chorioamnionitis was associated with the presence of IL-33+ macrophages in the chorioamniotic membranes and umbilical cord; 4) expression of IL-33 or IL1RL1 (ST2) mRNA in AECs was undetectable; 5) IL-33 mRNA expression increased in AMCs and HUVECs after IL-1β treatment but did not change with CXCL10 treatment; and 6) IL1RL1 (ST2) expression decreased in AMCs and increased in HUVECs after IL-1β but not CXCL10 treatment. Conclusions: IL-33 is expressed in the nucleus of placental endothelial cells, CD14+ macrophages, and myofibroblasts in the Wharton’s jelly. IL-1β can induce the expression of IL-33 and its receptor. Protein expression of IL-33 is detectable in macrophages of the chorioamniotic membranes in acute (but not chronic) chorioamnionitis.
The FASEB Journal | 2016
Krishna Rao Maddipati; Roberto Romero; Tinnakorn Chaiworapongsa; Piya Chaemsaithong; Sen Lin Zhou; Zhonghui Xu; Adi L. Tarca; Juan Pedro Kusanovic; Ricardo Gomez; Noppadol Chaiyasit; Kenneth V. Honn
Bioactive lipids derived from the metabolism of polyunsaturated fatty acids are important mediators of the inflammatory response. Labor per se is considered a sterile inflammatory process. Intra‐amniotic inflammation (IAI) due to microorganisms (i.e., intra‐amniotic infection) or danger signals (i.e., sterile IAI) has been implicated in the pathogenesis of preterm labor and clinical chorioamnionitis at term. Early and accurate diagnosis of microbial invasion of the amniotic cavity (MIAC) requires analysis of amniotic fluid (AF). It is possible that IAI caused by microorganisms is associated with a stereotypic lipidomic profile, and that analysis of AF may help in the identification of patients with this condition. To test this hypothesis, we analyzed the fatty acyl lipidome of AF by liquid chromatography—mass spectrometry from patients in spontaneous labor at term and preterm gestations. We report that the AF concentrations of proinflammatory lipid mediators of the 5‐lipoxygenase pathway are significantly higher in MIAC than in cases of sterile IAI. These results suggest that the concentrations of 5‐lipoxygenase metabolites of arachidonic acid, 5‐hydroxyeicosatetraenoic acid, and leukotriene B4 in particular could serve as potential biomarkers of MIAC. This finding could have important implications for the rapid identification of patients who may benefit from antimicrobial treatment.—Maddipati, K. R., Romero, R., Chaiworapongsa, T., Chaemsaithong, P., Zhou, S.‐L., Xu, Z., Tarca, A. L., Kusanovic, J. P., Gomez, R., Chaiyasit, N., Honn, K. V. Lipidomic analysis of patients with microbial invasion of the amniotic cavity reveals up‐regulation of leukotriene B4. FASEBJ. 30, 3296–3307 (2016). www.fasebj.org