Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongju Lu is active.

Publication


Featured researches published by Zhongju Lu.


Circulation Research | 2004

Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers

Irina A. Potapova; Alexei N. Plotnikov; Zhongju Lu; Peter Danilo; Virginijus Valiunas; Jihong Qu; Sergey V. Doronin; Joan Zuckerman; Iryna N. Shlapakova; Junyuan Gao; Zongming Pan; Alan J. Herron; Richard B. Robinson; Peter R. Brink; Michael R. Rosen; Ira S. Cohen

Abstract— We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1±3.8 pA/pF at −150 mV) activating in the diastolic potential range with reversal potential of −37.5±1.0 mV, confirming the expressed current as If-like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93±16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161±4 bpm when hMSCs were expressing both EGFP+mHCN2 (P <0.05). We next injected 10 6 hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45±1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61±5 bpm; P <0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.


Circulation | 2007

Xenografted Adult Human Mesenchymal Stem Cells Provide a Platform for Sustained Biological Pacemaker Function in Canine Heart

Alexei N. Plotnikov; Iryna N. Shlapakova; Matthias Szabolcs; Peter Danilo; Beverly H. Lorell; Irina A. Potapova; Zhongju Lu; Amy B. Rosen; Richard T. Mathias; Peter R. Brink; Richard B. Robinson; Ira S. Cohen; Michael R. Rosen

Background— Biological pacemaking has been performed with viral vectors, human embryonic stem cells, and adult human mesenchymal stem cells (hMSCs) as delivery systems. Only with human embryonic stem cells are data available regarding stability for >2 to 3 weeks, and here, immunosuppression has been used to facilitate survival of xenografts. The purpose of the present study was to determine whether hMSCs provide stable impulse initiation over 6 weeks without the use of immunosuppression, the “dose” of hMSCs that ensures function over this period, and the catecholamine responsiveness of hMSC-packaged pacemakers. Methods and Results— A full-length mHCN2 cDNA subcloned in a pIRES2-EGFP vector was electroporated into hMSCs. Transfection efficiency was estimated by GFP expression. IHCN2 was measured with patch clamp, and cells were administered into the left ventricular anterior wall of adult dogs in complete heart block and with backup electronic pacemakers. Studies encompassed 6 weeks. IHCN2 for all cells was 32.1±1.3 pA/pF (mean±SE) at −150 mV. Pacemaker function in intact dogs required 10 to 12 days to fully stabilize and persisted consistently through day 42 in dogs receiving ≥700 000 hMSCs (≈40% of which carried current). Rhythms were catecholamine responsive. Tissues from animals killed at 42 days manifested neither apoptosis nor humoral or cellular rejection. Conclusions— hMSCs provide a means for administering catecholamine-responsive biological pacemakers that function stably for 6 weeks and manifest no cellular or humoral rejection at that time. Cell doses >700 000 are sufficient for pacemaking when administered to left ventricular myocardium.


Circulation | 2006

Wild-Type and Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker

Annalisa Bucchi; Alexei N. Plotnikov; Iryna N. Shlapakova; Peter Danilo; Yelena Kryukova; Jihong Qu; Zhongju Lu; Huilin Liu; Zongming Pan; Irina A. Potapova; Bruce Ken Knight; Steven D. Girouard; Ira S. Cohen; Peter R. Brink; Richard B. Robinson; Michael R. Rosen

Background— Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. Methods and Results— In cultured neonatal rat myocytes, activation midpoint was −46.9 mV in mE324A versus −66.1 mV in mHCN2 (P<0.05). mE324A manifested a positive shift of voltage dependence of gating kinetics of activation and deactivation compared with mHCN2 (P<0.05) in myocytes as well as Xenopus oocytes. In intact dogs in complete atrioventricular block, saline (control), mHCN2, or mE324A virus was injected into left bundle branch, and EPM were implanted (VVI 45 bpm). Twenty-four–hour ECGs were monitored for 14 days. With EPM discontinued, there was no difference in duration of overdrive suppression among groups. However, basal heart rates in controls were less than those in mHCN2, which did not differ from those in E324A (45 versus 57 versus 53 bpm; P<0.05). When spontaneous rate fell below 45 bpm, EPM intervened at that rate, triggering 83% of beats in control, contrasting (P<0.05) with 26% (mHCN2) and 36% (mE324A). On day 14, epinephrine (1 &mgr;g/kg per minute IV) induced a 50% heart rate increase in all mE324A, one third of mHCN2, and one fifth of control (P<0.05 mE324A versus control or mHCN2). Conclusions— mE324A induces faster, more positive pacemaker current activation than mHCN2 and stable, catecholamine-sensitive rhythms in situ that compete with EPM comparably but more catecholamine responsively than mHCN2. BPM/EPM tandems function reliably, reduce the number of EPM beats, and confer sympathetic responsiveness to the tandem.


Science Translational Medicine | 2012

Suppression of Phosphoinositide 3-Kinase Signaling and Alteration of Multiple Ion Currents in Drug-Induced Long QT Syndrome

Zhongju Lu; Chia-Yen C. Wu; Ya-Ping Jiang; Lisa M. Ballou; Chris Clausen; Ira S. Cohen; Richard Z. Lin

The dangerous heart arrhythmias that are triggered as a side effect of some drugs are caused by many ion channels, prompting a rethinking of how we screen for these adverse events. Long QT: A Many-Channeled Syndrome To “do no harm” is a key principle of medical ethics, yet the use of some drugs can trigger life-threatening side effects. For example, the anticancer drug nilotinib—a tyrosine kinase inhibitor—can cause sudden death by inducing an irregular heartbeat and, as such, carries a black box warning from the U.S. Food and Drug Administration. Specifically, nilotinib (and other medications) can produce long QT syndrome, in which repolarization of the heart is delayed after a heartbeat. This effect is believed to be caused by direct blockade of the potassium ion channel through which the repolarizing current flows. Because some phosphoinositide 3-kinases (PI3Ks)—intracellular signal-transducing enzymes—are activated by tyrosine kinases, Lu et al. investigated whether the cardiac effects of nilotinib and related drugs might in part be mediated by PI3Ks. In isolated cardiac cells, delayed repolarization is seen as an increase in action potential duration (APD); as expected, treatment with these drugs increased the APD, whereas PI3K activity decreased. (Likewise, a PI3K inhibitor increased the APD.) The addition of the second messenger produced by PI3K normalized the APD, indicating that drug-induced PI3K inhibition is responsible for the increased APD. Lu et al. also showed that both nilotinib and a PI3K inhibitor affected currents through multiple ion channels, including calcium and sodium channels, in addition to the potassium channel originally thought to be responsible for drug-induced long QT syndrome. Furthermore, isolated mouse hearts lacking a PI3K subunit displayed a prolonged QT interval on an electrocardiogram—the sign of long QT syndrome. Although nilotinib increased this interval in wild-type hearts, it had no effect on those lacking the PI3K subunit. New drug candidates are routinely screened for their effects on the QT interval with tests focused on effects on the potassium channel. The findings of Lu et al. may require changes in how new drugs are tested. Many drugs, including some commonly used medications, can cause abnormal heart rhythms and sudden death, as manifest by a prolonged QT interval in the electrocardiogram. Cardiac arrhythmias caused by drug-induced long QT syndrome are thought to result mainly from reductions in the delayed rectifier potassium ion (K+) current IKr. Here, we report a mechanism for drug-induced QT prolongation that involves changes in multiple ion currents caused by a decrease in phosphoinositide 3-kinase (PI3K) signaling. Treatment of canine cardiac myocytes with inhibitors of tyrosine kinases or PI3Ks caused an increase in action potential duration that was reversed by intracellular infusion of phosphatidylinositol 3,4,5-trisphosphate. The inhibitors decreased the delayed rectifier K+ currents IKr and IKs, the L-type calcium ion (Ca2+) current ICa,L, and the peak sodium ion (Na+) current INa and increased the persistent Na+ current INaP. Computer modeling of the canine ventricular action potential showed that the drug-induced change in any one current accounted for less than 50% of the increase in action potential duration. Mouse hearts lacking the PI3K p110α catalytic subunit exhibited a prolonged action potential and QT interval that were at least partly a result of an increase in INaP. These results indicate that down-regulation of PI3K signaling directly or indirectly via tyrosine kinase inhibition prolongs the QT interval by affecting multiple ion channels. This mechanism may explain why some tyrosine kinase inhibitors in clinical use are associated with increased risk of life-threatening arrhythmias.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage.

Irina A. Potapova; Sergey V. Doronin; Damon J. Kelly; Amy B. Rosen; Adam J. T. Schuldt; Zhongju Lu; Paul V. Kochupura; Richard B. Robinson; Michael R. Rosen; Peter R. Brink; Glenn R. Gaudette; Ira S. Cohen

The need to regenerate tissue is paramount, especially for the heart that lacks the ability to regenerate after injury. The urinary bladder extracellular matrix (ECM), when used to repair a right ventricular defect, successfully regenerated some mechanical function. The objective of the current study was to determine whether the regenerative effect of ECM could be improved by seeding the patch with human mesenchymal stem cells (hMSCs) enhanced to differentiate down a cardiac linage. hMSCs were used to form three-dimensional spheroids. The expression of cardiac proteins was determined in cells exposed to the spheroid formation and compared with nonmanipulated hMSCs. To determine whether functional calcium channels were present, the cells were patch clamped. To evaluate the ability of these cells to regenerate mechanical function, the spheroids were seeded on ECM and then implanted into the canine heart to repair a full-thickness right ventricular defect. As a result, many of the cells spreading from the spheroids expressed cardiac-specific proteins, including sarcomeric alpha-actinin, cardiotin, and atrial natriuretic peptide, as well as the cell cycle markers cyclin D1 and proliferating cell nuclear antigen. A calcium current similar in amplitude to that of ventricular myocytes was present in 16% of the cells. The cardiogenic cell-seeded scaffolds increased the regional mechanical function in the canine heart compared with the unmanipulated hMSC-seeded scaffolds. In addition, the cells prelabeled with fluorescent markers demonstrated myocyte-specific actinin staining with sarcomere spacing similar to that of normal myocytes. In conclusion, the spheroid-derived cells express cardiac-specific proteins and demonstrate a calcium current similar to adult ventricular myocytes. When these cells are implanted into the canine heart, some of these cells appear striated and mechanical function is improved compared with the unmanipulated hMSCs. Further investigation will be required to determine whether the increased mechanical function is due to a differentiation of the cardiogenic cells to myocytes or to other effects.


Circulation | 2009

Loss of Cardiac Phosphoinositide 3-Kinase p110α Results in Contractile Dysfunction

Zhongju Lu; Ya-Ping Jiang; Wei Wang; Xin-Hua Xu; Richard T. Mathias; Emilia Entcheva; Lisa M. Ballou; Ira S. Cohen; Richard Z. Lin

Background— Phosphoinositide 3-kinase (PI3K) p110&agr; plays a key role in insulin action and tumorigenesis. Myocyte contraction is initiated by an inward Ca2+ current (ICa,L) through the voltage-dependent L-type Ca2+ channel (LTCC). The aim of this study was to evaluate whether p110&agr; also controls cardiac contractility by regulating the LTCC. Methods and Results— Genetic ablation of p110&agr; (also known as Pik3ca), but not p110&bgr; (also known as Pik3cb), in cardiac myocytes of adult mice reduced ICa,L and blocked insulin signaling in the heart. p110&agr;-null myocytes had a reduced number of LTCCs on the cell surface and a contractile defect that decreased cardiac function in vivo. Similarly, pharmacological inhibition of p110&agr; decreased ICa,L and contractility in canine myocytes. Inhibition of p110&bgr; did not reduce ICa,L. Conclusions— PI3K p110&agr; but not p110&bgr; regulates the LTCC in cardiac myocytes. Decreased signaling to p110&agr; reduces the number of LTCCs on the cell surface and thus attenuates ICa,L and contractility.


PLOS Computational Biology | 2013

Computational Optogenetics: Empirically-Derived Voltage- and Light-Sensitive Channelrhodopsin-2 Model

John C. Williams; Jianjin Xu; Zhongju Lu; Aleksandra Klimas; Xuxin Chen; Christina M. Ambrosi; Ira S. Cohen; Emilia Entcheva

Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.


Diabetes | 2007

Decreased L-type Ca2+ Current in Cardiac Myocytes of Type 1 Diabetic Akita Mice Due to Reduced Phosphatidylinositol 3-kinase Signaling

Zhongju Lu; Ya-Ping Jiang; Xin-Hua Xu; Lisa M. Ballou; Ira S. Cohen; Richard Z. Lin

OBJECTIVE—Contraction of cardiac myocytes is initiated by Ca2+ entry through the voltage-dependent l-type Ca2+ channel (LTCC). Previous studies have shown that phosphatidylinositol (PI) 3-kinase signaling modulates LTCC function. Because PI 3-kinases are key mediators of insulin action, we investigated whether LTCC function is affected in diabetic animals due to reduced PI 3-kinase signaling. RESEARCH DESIGN AND METHODS—We used whole-cell patch clamping and biochemical assays to compare cardiac LTCC function and PI 3-kinase signaling in insulin-deficient diabetic mice heterozygous for the Ins2Akita mutation versus nondiabetic littermates. RESULTS—Diabetic mice had a cardiac contractility defect, reduced PI 3-kinase signaling in the heart, and decreased l-type Ca2+ current (ICa,L) density in myocytes compared with control nondiabetic littermates. The lower ICa,L density in myocytes from diabetic mice is due at least in part to reduced cell surface expression of the LTCC. ICa,L density in myocytes from diabetic mice was increased to control levels by insulin treatment or intracellular infusion of PI 3,4,5-trisphosphate [PI(3,4,5)P3]. This stimulatory effect was blocked by taxol, suggesting that PI(3,4,5)P3 stimulates microtubule-dependent trafficking of the LTCC to the cell surface. The voltage dependence of steady-state activation and inactivation of ICa,L was also shifted to more positive potentials in myocytes from diabetic versus nondiabetic animals. PI(3,4,5)P3 infusion eliminated only the difference in voltage dependence of steady-state inactivation of ICa,L. CONCLUSIONS—Decreased PI 3-kinase signaling in myocytes from type 1 diabetic mice leads to reduced Ca2+ entry through the LTCC, which might contribute to the negative effect of diabetes on cardiac contractility.


Journal of Biological Chemistry | 2005

A Transgenic Mouse Model of Heart Failure Using Inducible Gαq

Gaofeng Fan; Ya-Ping Jiang; Zhongju Lu; Dwight W. Martin; Damon J. Kelly; Joan Zuckerman; Lisa M. Ballou; Ira S. Cohen; Richard Z. Lin

Receptors coupled to Gαq play a key role in the development of heart failure. Studies using genetically modified mice suggest that Gαq mediates a hypertrophic response in cardiac myocytes. Gαq signaling in these models is modified during early growth and development, whereas most heart failure in humans occurs after cardiac damage sustained during adulthood. To determine the phenotype of animals that express increased Gαq signaling only as adults, we generated transgenic mice that express a silent Gαq protein (GαqQ209L-hbER) in cardiac myocytes that can be activated by tamoxifen. Following drug treatment to activate Gαq Q209L-hbER, these mice rapidly develop a dilated cardiomyopathy and heart failure. This phenotype does not appear to involve myocyte hypertrophy but is associated with dephosphorylation of phospholamban (PLB), decreased sarcoplasmic reticulum Ca2+-ATPase activity, and a decrease in L-type Ca2+ current density. Changes in Ca2+ handling and decreased cardiac contractility are apparent 1 week after GαqQ209L-hbER activation. In contrast, transgenic mice that express an inducible Gαq mutant that cannot activate phospholipase Cβ (PLCβ) do not develop heart failure or changes in PLB phosphorylation, but do show decreased L-type Ca2+ current density. These results demonstrate that activation of Gαq in cardiac myocytes of adult mice causes a dilated cardiomyopathy that requires the activation of PLCβ. However, increased PLCβ signaling is not required for all of the Gαq-induced cardiac abnormalities.


Diabetes | 2013

Increased Persistent Sodium Current Due to Decreased PI3K Signaling Contributes to QT Prolongation in the Diabetic Heart

Zhongju Lu; Ya-Ping Jiang; Chia-Yen C. Wu; Lisa M. Ballou; Shengnan Liu; Eileen S. Carpenter; Michael R. Rosen; Ira S. Cohen; Richard Z. Lin

Diabetes is an independent risk factor for sudden cardiac death and ventricular arrhythmia complications of acute coronary syndrome. Prolongation of the QT interval on the electrocardiogram is also a risk factor for arrhythmias and sudden death, and the increased prevalence of QT prolongation is an independent risk factor for cardiovascular death in diabetic patients. The pathophysiological mechanisms responsible for this lethal complication are poorly understood. Diabetes is associated with a reduction in phosphoinositide 3-kinase (PI3K) signaling, which regulates the action potential duration (APD) of individual myocytes and thus the QT interval by altering multiple ion currents, including the persistent sodium current INaP. Here, we report a mechanism for diabetes-induced QT prolongation that involves an increase in INaP caused by defective PI3K signaling. Cardiac myocytes of mice with type 1 or type 2 diabetes exhibited an increase in APD that was reversed by expression of constitutively active PI3K or intracellular infusion of phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K. The diabetic myocytes also showed an increase in INaP that was reversed by activated PI3K or PIP3. The increases in APD and INaP in myocytes translated into QT interval prolongation for both types of diabetic mice. The long QT interval of type 1 diabetic hearts was shortened by insulin treatment ex vivo, and this effect was blocked by a PI3K inhibitor. Treatment of both types of diabetic mouse hearts with an INaP blocker also shortened the QT interval. These results indicate that downregulation of cardiac PI3K signaling in diabetes prolongs the QT interval at least in part by causing an increase in INaP. This mechanism may explain why the diabetic population has an increased risk of life-threatening arrhythmias.

Collaboration


Dive into the Zhongju Lu's collaboration.

Top Co-Authors

Avatar

Ira S. Cohen

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge