Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhonglin Zhang is active.

Publication


Featured researches published by Zhonglin Zhang.


PLOS ONE | 2014

Adenovirus-Mediated Gene Transfer in Mesenchymal Stem Cells Can Be Significantly Enhanced by the Cationic Polymer Polybrene

Chen Zhao; Ningning Wu; Fang Deng; Hongmei Zhang; Ning Wang; Wenwen Zhang; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Di Wu; Jixing Ye; Youlin Deng; Guolin Zhou; Hue H. Luu; Rex C. Haydon; Weike Si; Tong-Chuan He

Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 μg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 μg/ml and 2 μg/ml, respectively. FACS analysis indicates that Polybrene (at 4 μg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 μg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 μg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.


PLOS ONE | 2014

Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

Ning Wang; Hongyu Zhang; Bing-Qiang Zhang; Wei Liu; Zhonglin Zhang; Min Qiao; Hongmei Zhang; Fang Deng; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Zhan Liao; Qian Zhang; Zhengjian Yan; Liangjun Yin; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Houjie Liang; Tong-Chuan He

Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.


Stem Cells and Development | 2014

Bone Morphogenetic Protein-9 Effectively Induces Osteo/Odontoblastic Differentiation of the Reversibly Immortalized Stem Cells of Dental Apical Papilla

Jinhua Wang; Hongmei Zhang; Wenwen Zhang; Enyi Huang; Ning Wang; Ningning Wu; Sheng Wen; Xian Chen; Zhan Liao; Fang Deng; Liangjun Yin; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Feng Deng

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.


PLOS ONE | 2014

The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

Ning Wang; Wenwen Zhang; Jing Cui; Hongmei Zhang; Xiang Chen; Ruidong Li; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Fang Deng; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Jixing Ye; Youlin Deng; Zhongliang Wang; Min Qiao; Hue H. Luu; Rex C. Haydon; Lewis L. Shi; Houjie Liang; Tong-Chuan He

Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.


Gene Therapy | 2014

Overexpression of Ad5 precursor terminal protein accelerates recombinant adenovirus packaging and amplification in HEK-293 packaging cells

Ningning Wu; Hongbin Zhang; Fang Deng; Ruifang Li; Wenwen Zhang; Xian Chen; Sheng Wen; Ning Wang; Junhui Zhang; Liangjun Yin; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Di Wu; Jixing Ye; Youlin Deng; Ke Yang; Hue H. Luu; Rex C. Haydon; Tong-Chuan He

Recombinant adenoviruses are one of the most common vehicles for efficient in vitro and in vivo gene deliveries. Here, we investigate whether exogenous precursor terminal protein (pTP) expression in 293 cells improves the efficiency of adenovirus packaging and amplification. We used a piggyBac transposon-based vector and engineered a stable 293 line that expresses high level of Ad5 pTP, designated as 293pTP. Using the AdBMP6-GLuc that expresses green fluorescent protein (GFP), BMP6 and Gaussia luciferase, we found that the infectivity of AdBMP6-GLuc viral samples packaged in 293pTP cells was titrated up to 19.3 times higher than that packaged in parental 293 cells. AdBMP6-GLuc viral samples packaged in 293pTP cells exhibited significantly higher transduction efficiency in 143B and immortalized mouse embryonic fibroblast (iMEF) cells, as assessed by fluorescence-activated cell sorting analysis of GFP-positive cells, the luciferase activity assay and BMP6-induced osteogenic marker alkaline phosphatase activities in iMEFs. When adenovirus amplification efficiency was analyzed, we found that 293pTP cells infected with AdBMP6-GLuc yielded up to 12.6 times higher titer than that in parental 293 cells, especially at lower multiplicities of infection. These results strongly suggest that exogenous pTP expression may accelerate the packaging and amplification of recombinant adenoviruses. Thus, the engineered 293pTP cells should be a superior packaging line for efficient adenovirus production.


Current Cancer Drug Targets | 2014

Targeting BMP9-Promoted Human Osteosarcoma Growth by Inactivation of Notch Signaling

Ruidong Li; Wenwen Zhang; Jing Cui; Wei Shui; Liangjun Yin; Yang Wang; Hongyu Zhang; Ning Wang; Ningning Wu; Guoxin Nan; Xian Chen; Sheng Wen; Fang Deng; Hongmei Zhang; Guolin Zhou; Zhan Liao; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Zhong-Liang Deng

Osteosarcoma (OS) is the most common primary malignancy of bone and is usually associated with poor prognosis due to its high incidence of metastasis and chemoresistance. Molecular pathogenesis of OS is poorly understood. We previously showed that OS cells are refractory to BMP9-induced osteogenesis and respond favorably to proliferation and tumor growth. Here we investigate if Notch signaling mediates the BMP9-promoted cell proliferation and tumor growth of human osteosarcoma (OS). We find that the expression of Notch1, Notch2, Notch3, DLL1, JAG1 and JAG2 is readily detected in most of the tested OS cell lines. BMP9-promoted OS cell proliferation, migration, and cell cycle S/G2 progression are effectively inhibited by a dominant-negative mutant of Notch1 (dnNotch1) or the γ-secretase inhibitor Compound E (ComE). Furthermore, BMP9-promoted tumor growth and osteolytic lesions in vivo are significantly inhibited by dnNotch1. BMP9 up-regulates the expression of Notch1, Notch3, DLL1, and JAG1 in OS cells. Accordingly, BMP9 stimulation induces a nuclear accumulation of NICD, which is blocked by ComE. Our results demonstrate that BMP9-promoted OS proliferation and tumor growth is at least in part mediated by Notch signaling, suggesting that osteogenic BMPs may function as upstream regulators of Notch signaling in OS tumorigenesis. Thus, pharmacologic intervention of Notch signaling may be explored as a new therapeutic strategy for human OS tumors.


Oncology Reports | 2014

Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells

Yunyuan Zhang; Xian Chen; Min Qiao; Bing-Qiang Zhang; Ning Wang; Zhonglin Zhang; Zhan Liao; Liyi Zeng; Youlin Deng; Fang Deng; Junhui Zhang; Liangjun Yin; Wei Liu; Qian Zhang; Zhengjian Ya; Jixing Ye; Zhongliang Wang; Lan Zhou; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Hongyu Zhang

Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/β-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells.


PLOS ONE | 2014

Characterization of constitutive promoters for piggyBac transposon-mediated stable transgene expression in mesenchymal stem cells (MSCs).

Sheng Wen; Hongmei Zhang; Yasha Li; Ning Wang; Wenwen Zhang; Ke Yang; Ningning Wu; Xian Chen; Fang Deng; Zhan Liao; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Guolin Zhou; Hue H. Luu; Rex C. Haydon; Lewis L. Shi; Tong-Chuan He; Guanghui Wei

Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.


Cell Transplantation | 2015

Reversibly Immortalized Mouse Articular Chondrocytes Acquire Long-Term Proliferative Capability While Retaining Chondrogenic Phenotype.

Joseph D. Lamplot; Bo Liu; Liangjun Yin; Wenwen Zhang; Zhongliang Wang; Gaurav Luther; Eric R. Wagner; Ruidong Li; Guoxin Nan; Wei Shui; Zhengjian Yan; Richard Rames; Fang Deng; Hongmei Zhang; Zhan Liao; Wei Liu; Junhui Zhang; Zhonglin Zhang; Qian Zhang; Jixing Ye; Youlin Deng; Min Qiao; Rex C. Haydon; Hue H. Luu; Jovito Angeles; Lewis L. Shi; Tong-Chuan He; Sherwin H. Ho

Cartilage tissue engineering holds great promise for treating cartilaginous pathologies including degenerative disorders and traumatic injuries. Effective cartilage regeneration requires an optimal combination of biomaterial scaffolds, chondrogenic seed cells, and biofactors. Obtaining sufficient chondrocytes remains a major challenge due to the limited proliferative capability of primary chondrocytes. Here we investigate if reversibly immortalized mouse articular chondrocytes (iMACs) acquire long-term proliferative capability while retaining the chondrogenic phenotype. Primary mouse articular chondrocytes (MACs) can be efficiently immortalized with a retroviral vector-expressing SV40 large T antigen flanked with Cre/loxP sites. iMACs exhibit long-term proliferation in culture, although the immortalization phenotype can be reversed by Cre recombinase. iMACs express the chondrocyte markers Col2a1 and aggrecan and produce chondroid matrix in micromass culture. iMACs form subcutaneous cartilaginous masses in athymic mice. Histologic analysis and chondroid matrix staining demonstrate that iMACs can survive, proliferate, and produce chondroid matrix. The chondrogenic growth factor BMP2 promotes iMACs to produce more mature chondroid matrix resembling mature articular cartilage. Taken together, our results demonstrate that iMACs acquire long-term proliferative capability without losing the intrinsic chondrogenic features of MACs. Thus, iMACs provide a valuable cellular platform to optimize biomaterial scaffolds for cartilage regeneration, to identify biofactors that promote the proliferation and differentiation of chondrogenic progenitors, and to elucidate the molecular mechanisms underlying chondrogenesis.


Cellular Physiology and Biochemistry | 2014

Functional Characteristics of Reversibly Immortalized Hepatic Progenitor Cells Derived from Mouse Embryonic Liver

Yang Bi; Yun He; Jiayi Huang; Yuxi Su; Gao-Hui Zhu; Yi Wang; Min Qiao; Bing-Qiang Zhang; Hongyu Zhang; Zhongliang Wang; Wei Liu; Jing Cui; Quan Kang; Zhonglin Zhang; Youlin Deng; Ruifang Li; Qian Zhang; Ke Yang; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Ni Tang

Background/Aims: Liver is a vital organ and retains its regeneration capability throughout adulthood, which requires contributions from different cell populations, including liver precursors and intrahepatic stem cells. To overcome the mortality of hepatic progenitors (iHPs) in vitro, we aim to establish reversibly immortalized hepatic progenitor cells from mouse embryonic liver. Methods and Results: Using retroviral system to stably express SV40 T antigen flanked with Cre/LoxP sites, we establish a repertoire of iHP clones with varied differentiation potential. The iHP cells maintain long-term proliferative activity and express varied levels of progenitor markers (Pou5f1/Oct4 and Dlk) and hepatocyte markers (AFP, Alb and ApoB). Five representative iHP clones express hepatic/pancreatic transcription factors HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1. Dexamethasone is shown to promote the expression of hepatocyte markers AFP and TAT, along with ICG-uptake and glycogen storage functions in the iHP clones. Cre-mediated removal of SV40 T antigen reverses the proliferative activity of iHP cells. When iHP cells are subcutaneously implanted in athymic nude mice, no tumor formation is observed for up to 8 weeks. Conclusions: We demonstrate that the established iHP cells are stable, reversible, and non-tumorigenic hepatic progenitor-like cells, which should be valuable for studying liver organogenesis, metabolic regulations, and hepatic lineage-specific differentiation.

Collaboration


Dive into the Zhonglin Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jixing Ye

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Deng

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Zhan Liao

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge