Zhongyi Zhu
Fudan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhongyi Zhu.
Annals of Statistics | 2009
Huixia Judy Wang; Zhongyi Zhu; Jianhui Zhou
Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification of the error distributions. The asymptotic properties of the proposed estimators are established for the varying coefficients as well as for the constant coefficients. We develop rank score tests for hypotheses on the coefficients, including the hypotheses on the constancy of a subset of the varying coefficients. Hypothesis testing of this type is theoretically challenging, as the dimensions of the parameter spaces under both the null and the alternative hypotheses are growing with the sample size. We assess the finite sample performance of the proposed method by Monte Carlo simulation studies, and demonstrate its value by the analysis of an AIDS data set, where the modeling of quantiles provides more comprehensive information than the usual least squares approach.
Journal of the American Statistical Association | 2005
Xuming He; Wing K. Fung; Zhongyi Zhu
In this article we consider robust generalized estimating equations for the analysis of semiparametric generalized partial linear models (GPLMs) for longitudinal data or clustered data in general. We approximate the nonparametric function in the GPLM by a regression spline, and use bounded scores and leverage-based weights in the estimating equation to achieve robustness against outliers. We show that the regression spline approach avoids some of the intricacies associated with the profile-kernel method, and that robust estimation and inference can be carried out operationally as if a generalized linear model were used.
Computational Statistics & Data Analysis | 2013
Yanlin Tang; Huixia Judy Wang; Zhongyi Zhu
In this paper, we develop a new variable selection procedure for quantile varying coefficient models with longitudinal data. The proposed method is based on basis function approximation and a class of group versions of the adaptive LASSO penalty, which penalizes the L γ norm of the within-group coefficients with γ ? 1 . We show that with properly chosen adaptive group weights in the penalization, the resulting penalized estimators are consistent in variable selection, and the estimated functional coefficients retain the optimal convergence rate of nonparametric estimators under the true model. We assess the finite sample performance of the proposed procedure by an extensive simulation study, and the analysis of an AIDS data set and a yeast cell-cycle gene expression data set.
Journal of Statistical Computation and Simulation | 2016
Guoyou Qin; Jie Mao; Zhongyi Zhu
In longitudinal data analysis, efficient estimation of regression coefficients requires a correct specification of certain covariance structure, and efficient estimation of covariance matrix requires a correct specification of mean regression model. In this article, we propose a general semiparametric model for the mean and the covariance simultaneously using the modified Cholesky decomposition. A regression spline-based approach within the framework of generalized estimating equations is proposed to estimate the parameters in the mean and the covariance. Under regularity conditions, asymptotic properties of the resulting estimators are established. Extensive simulation is conducted to investigate the performance of the proposed estimator and in the end a real data set is analysed using the proposed approach.
Journal of Multivariate Analysis | 2013
Yanlin Tang; Xin-Yuan Song; Huixia Judy Wang; Zhongyi Zhu
In this paper, we propose a two-stage variable selection procedure for high dimensional quantile varying coefficient models. The proposed method is based on basis function approximation and LASSO-type penalties. We show that the first stage penalized estimator with LASSO penalty reduces the model from ultra-high dimensional to a model that has size close to the true model, but contains the true model as a valid sub model. By applying adaptive LASSO penalty to the reduced model, the second stage excludes the remained irrelevant covariates, leading to an estimator consistent in variable selection. A simulation study and the analysis of a real data demonstrate that the proposed method performs quite well in finite samples, with regard to dimension reduction and variable selection.
Journal of Multivariate Analysis | 2011
Jiarui Feng; Zhongyi Zhu
In this article, we consider a semiparametric zero-inflated Poisson mixed model that postulates a possible nonlinear relationship between the natural logarithm of the mean of the counts and a particular covariate in the longitudinal studies. A penalized log-likelihood function is proposed and Monte Carlo expectation-maximization algorithm is used to derive the estimates. Under some mild conditions, we establish the consistency and asymptotic normality of the resulting estimators. Simulation studies are carried out to investigate the finite sample performance of the proposed method. For illustration purposes, the method is applied to a data set from a pharmaceutical company where the variable of interest is the number of episodes of side effects after the patient has taken the treatments.
Journal of Nonparametric Statistics | 2012
Guoyou Qin; Zhongyi Zhu; Wing K. Fung
In this paper, we propose robust estimation of the generalised partial linear model with covariates missing at random. The developed approach integrated the robust method and the method for dealing with missing data. Under some regularity conditions, we establish the asymptotic normality of the proposed estimator of the regression coefficients and show that the proposed estimator of the nonparametric function can achieve the optimal rate of convergence. It can be observed that the regression spline approach avoids some of the intricacies associated with the kernel method, and the robust estimation and inference can be carried out operationally as if a generalised linear model were used. Simulation studies are conducted to investigate the robustness of the proposed method. At the end, the proposed method is applied to a real data analysis for illustration.
Statistics in Medicine | 2016
Guoyou Qin; Jiajia Zhang; Zhongyi Zhu; Wing K. Fung
Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright
Journal of Multivariate Analysis | 2016
Haiqiang Ma; Zhongyi Zhu
In this article, we propose the continuously dynamic additive model (CDAM), in which both the predictor and response are random functions. In continuously dynamic additive modeling, we assume that additivity occurs in the time domain rather than in spectral domain, and characterize this model through a time-dependent smooth surface that reflects the underlying nonlinear dynamic relationships between functional predictor and functional response. We use tensor product basis expansion with varying coefficient functions to approximate the time-varying smooth surface, and then estimate varying-coefficient functions by combining functional principal components analysis with penalized least squares method. In a theoretical investigation, we show that the predictions obtained from the fitted CDAM are asymptotically consistent under some mild conditions. Finally, we demonstrate the superiority of the proposed model and method through extensive simulation studies as well as a real data example.
Computational Statistics & Data Analysis | 2019
Haiqiang Ma; Ting Li; Hongtu Zhu; Zhongyi Zhu
Quantile regression for functional partially linear model in ultra-high dimensions is proposed and studied. By focusing on the conditional quantiles, where conditioning is on both multiple random processes and high-dimensional scalar covariates, the proposed model can lead to a comprehensive description of the scalar response. To select and estimate important variables, a double penalized functional quantile objective function with two nonconvex penalties is developed, and the optimal tuning parameters involved can be chosen by a two-step technique. Based on the difference convex analysis (DCA), the asymptotic properties of the resulting estimators are established, and the convergence rate of the prediction of the conditional quantile function can be obtained. Simulation studies demonstrate a competitive performance against the existing approach. A real application to Alzheimer’s Disease Neuroimaging Initiative (ADNI) data is used to illustrate the practicality of the proposed model.