Zhongyu Sun
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhongyu Sun.
Scientific Reports | 2013
Qinfeng Guo; Douglas A. Kelt; Zhongyu Sun; Hongxiao Liu; Liangjun Hu; Hai Ren; Jun Wen
While horizontal gradients of biodiversity have been examined extensively in the past, vertical diversity gradients (elevation, water depth) are attracting increasing attention. We compiled data from 443 elevational gradients involving diverse organisms worldwide to investigate how elevational diversity patterns may vary between the Northern and Southern hemispheres and across latitudes. Our results show that most elevational diversity curves are positively skewed (maximum diversity below the middle of the gradient) and the elevation of the peak in diversity increases with the elevation of lower sampling limits and to a lesser extent with upper limit. Mountains with greater elevational extents, and taxonomic groups that are more inclusive, show proportionally more unimodal patterns whereas other ranges and taxa show highly variable gradients. The two hemispheres share some interesting similarities but also remarkable differences, likely reflecting differences in landmass and mountain configurations. Different taxonomic groups exhibit diversity peaks at different elevations, probably reflecting both physical and physiological constraints.
Scientific Reports | 2016
Nan Liu; Ce Cao; Zhongyu Sun; Zhi-Fang Lin; Rufang Deng
Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2.−, H2O2, and ·OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3−, NH4NO3, Al3+, Zn2+, and Fe2+) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2.− accumulated in roots in response to pollutants, except that the staining of O2.− under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2.− was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and ·OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2.− via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3− treatment because of the treatment’s bleaching effect.
Scientific Reports | 2016
Nan Liu; Qinfeng Guo; Hai Ren; Zhongyu Sun
A 3.5-year field experiment was conducted in a subtropical degraded shrubland to assess how a nurse plant, the native shrub Rhodomyrtus tomentosa, affects the growth of the target trees Pinus elliottii, Schima superba, Castanopsis fissa, and Michelia macclurei, and to probe the intrinsic mechanisms from leaf chemical composition, construction cost (CC), and payback time aspects. We compared tree seedlings grown nearby shrub canopy (canopy subplots, CS) and in open space (open subplots, OS). S. superba in CS showed greater growth, while P. elliottii and M. macclurei were lower when compared to the plants grown in the OS. The reduced levels of high-cost compounds (proteins) and increased levels of low-cost compounds (organic acids) caused reduced CC values for P. elliottii growing in CS. While, the levels of both low-cost minerals and high-cost proteins increased in CS such that CC values of S. superba were similar in OS and CS. Based on maximum photosynthetic rates, P. elliottii required a longer payback time to construct required carbon in canopy than in OS, but the opposite was true for S. superba. The information from this study can be used to evaluate the potential of different tree species in the reforestation of subtropical degraded shrublands.
Scientific Reports | 2015
Zhongyu Sun; Yanqiao Chen; Valentin Schaefer; Huimiao Liang; Weihua Li; Shengqin Huang; Chang-Lian Peng
Hybridization between exotic and native species is of great interest to evolutionary biologists and ecologists because it usually shows a quick evolution of species and invasiveness. It has been reported that such hybridization frequently increases the adaptation and aggressiveness of the new hybrids. A hybrid between invasive Sphagneticola trilobata and its native congener S. calendulacea was recently found in subtropical China. S. calendulacea has a significantly higher tolerance to low temperature and weak light stress than S. trilobata, and its range includes both tropical and temperate regions. This study examined how the tolerance of the new hybrid to low temperature and weak light conditions (LTWL), expanded its geographical range. All changes of phenotype, gas exchange parameters, chlorophyll fluorescence parameters, contents of malonaldehyde (MDA) and activity of superoxide dismutase (SOD) and peroxidase (POD) indicated that hybridization slightly catalyzed the tolerance of the hybrid to LTWL condition and the responses of the hybrid were more similar with their invasive parent. The results demonstrate that the current hybrid populations may not expand their geographical distribution ranges in a short period, but the distribution of the backcrossed generations is still uncertain. The threat of the hybrid to its native parent in subtropical region should be concerned.
Community Ecology | 2015
J. Wang; Liujing Huang; Hai Ren; Zhongyu Sun; Qinfeng Guo
Soil seed banks can act as an important source in forest regeneration, and the information on the seed bank composition is vital for determining the resilience of plant communities under severe environments such as urban settings. In this study, we examined the seed bank density and functional composition, and their relationships with aboveground vegetation in three remnant evergreen broad-leaved forests, i.e., PuGang (PG), LuoGang (LG), and DaLingShan (DLS) under urbanization in Guangzhou, South China. In both years of our study (2010–2011), seed density and species richness for overall soil seed banks and each classified life forms (tree, shrub, herb and grass) significantly differed among the forests and were much higher in the PG forest. The prevailing life forms in the seed banks were herbs and grasses, and the proportion of tree species Importance Value index (IV) of the seed banks was low. We did not detect significant difference in the percentage of exotic species seeds in the seed banks among the forests. The proportion of species with animal dispersal mode was much higher in the DLS forest than in the PG and LG forests. The similarity in species composition between standing vegetation and seed banks was low with the lower value in the DLS forest than in PG and LG forest. Our findings suggest that the regeneration potential of the soil seed banks is limited for the remnant forests in urban areas. Therefore, greater proactive and enhanced conservation efforts are thus needed.
Scientific Reports | 2016
Zhongyu Sun; Jun Wang; Hai Ren; Qinfeng Guo; Junwu Shu; Nan Liu
Long-term ecological data play a vital role in ecological conservation and restoration, however, using information from local forest soil pollen data to assist restoration remains a challenge. This study analyzed two data sets, including 1) surface soil pollen (0–5 cm) and current vegetation data from four near-natural communities and four plantations, and 2) fossil pollen from soil profiles (0–80 cm) from a regional climax community and a degraded land. The pollen representativeness and similarity indexes were calculated. The results showed a low similarity between soil pollen and current vegetation (about 20%) thus forest soil pollen data should be used with caution when defining reference ecosystems. Pollen from Gironniera and Rutaceae which were abundant in broadleaved forest, were also detected in the 40–80 cm layer of a soil profile from the degraded land, which indicates its restoration possibility. Our study considered that the early restoration stage of the study area may benefit from using plant taxa of Pinus, Poaceae, Lonicera, Casuarina, Trema and Quercus. As Pinus, Castanopsis, Gironniera, Rutaceae, Helicia, Randia, Poaceae, Dicranopteris and Pteris always existed during succession, for regional forest restoration under global climate change, the roles of such “stable species” should be considered.
Ecological Indicators | 2013
Zhongyu Sun; Hai Ren; Valentin Schaefer; Hongfang Lu; Jun Wang; Linjun Li; Nan Liu
Restoration Ecology | 2014
Nan Liu; Weixing Zhu; Zhongyu Sun; Long Yang; Sufen Yuan; Hai Ren
Journal of Tropical Forest Science | 2012
Nan Liu; Hai Ren; Long Yang; Sufen Yuan; Jiaxin Wang; Zhongyu Sun
Environmental Monitoring and Assessment | 2014
Zhongyu Sun; Hai Ren; Val Schaefer; Qinfeng Guo; Jun Wang