Zhouchen Lin
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhouchen Lin.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013
Guangcan Liu; Zhouchen Lin; Shuicheng Yan; Ju Sun; Yong Yu; Yi Ma
In this paper, we address the subspace clustering problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to cluster the samples into their respective subspaces and remove possible outliers as well. To this end, we propose a novel objective function named Low-Rank Representation (LRR), which seeks the lowest rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, we prove that LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for data corrupted by arbitrary sparse errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace clustering and error correction in an efficient and effective way.
Pattern Recognition | 2009
Zhouchen Lin; Junfeng He; Xiaoou Tang; Chi-Keung Tang
The quick advance in image/video editing techniques has enabled people to synthesize realistic images/videos conveniently. Some legal issues may arise when a tampered image cannot be distinguished from a real one by visual examination. In this paper, we focus on JPEG images and propose detecting tampered images by examining the double quantization effect hidden among the discrete cosine transform (DCT) coefficients. To our knowledge, our approach is the only one to date that can automatically locate the tampered region, while it has several additional advantages: fine-grained detection at the scale of 8x8 DCT blocks, insensitivity to different kinds of forgery methods (such as alpha matting and inpainting, in addition to simple image cut/paste), the ability to work without fully decompressing the JPEG images, and the fast speed. Experimental results on JPEG images are promising.
computer vision and pattern recognition | 2012
Liansheng Zhuang; Haoyuan Gao; Zhouchen Lin; Yi Ma; Xin Zhang; Nenghai Yu
Constructing a good graph to represent data structures is critical for many important machine learning tasks such as clustering and classification. This paper proposes a novel non-negative low-rank and sparse (NNLRS) graph for semi-supervised learning. The weights of edges in the graph are obtained by seeking a nonnegative low-rank and sparse matrix that represents each data sample as a linear combination of others. The so-obtained NNLRS-graph can capture both the global mixture of subspaces structure (by the low rankness) and the locally linear structure (by the sparseness) of the data, hence is both generative and discriminative. We demonstrate the effectiveness of NNLRS-graph in semi-supervised classification and discriminative analysis. Extensive experiments testify to the significant advantages of NNLRS-graph over graphs obtained through conventional means.
european conference on computer vision | 2006
Junfeng He; Zhouchen Lin; Lifeng Wang; Xiaoou Tang
The steady improvement in image/video editing techniques has enabled people to synthesize realistic images/videos conveniently. Some legal issues may occur when a doctored image cannot be distinguished from a real one by visual examination. Realizing that it might be impossible to develop a method that is universal for all kinds of images and JPEG is the most frequently used image format, we propose an approach that can detect doctored JPEG images and further locate the doctored parts, by examining the double quantization effect hidden among the DCT coefficients. Up to date, this approach is the only one that can locate the doctored part automatically. And it has several other advantages: the ability to detect images doctored by different kinds of synthesizing methods (such as alpha matting and inpainting, besides simple image cut/paste), the ability to work without fully decompressing the JPEG images, and the fast speed. Experiments show that our method is effective for JPEG images, especially when the compression quality is high.
computer vision and pattern recognition | 2005
Zhouchen Lin; Rongrong Wang; Xiaoou Tang; Heung-Yeung Shum
The advance in image/video editing techniques has facilitated people in synthesizing realistic images/videos that may hard to be distinguished from real ones by visual examination. This poses a problem: how to differentiate real images/videos from doctored ones? This is a serious problem because some legal issues may occur if there is no reliable way for doctored image/video detection when human inspection fails. Digital watermarking cannot solve this problem completely. We propose an approach that computes the response functions of the camera by selecting appropriate patches in different ways. An image may be doctored if the response functions are abnormal or inconsistent to each other. The normality of the response functions is classified by a trained support vector machine (SVM). Experiments show that our method is effective for high-contrast images with many textureless edges.
computer vision and pattern recognition | 2012
Risheng Liu; Zhouchen Lin; Fernando De la Torre; Zhixun Su
Subspace clustering and feature extraction are two of the most commonly used unsupervised learning techniques in computer vision and pattern recognition. State-of-the-art techniques for subspace clustering make use of recent advances in sparsity and rank minimization. However, existing techniques are computationally expensive and may result in degenerate solutions that degrade clustering performance in the case of insufficient data sampling. To partially solve these problems, and inspired by existing work on matrix factorization, this paper proposes fixed-rank representation (FRR) as a unified framework for unsupervised visual learning. FRR is able to reveal the structure of multiple subspaces in closed-form when the data is noiseless. Furthermore, we prove that under some suitable conditions, even with insufficient observations, FRR can still reveal the true subspace memberships. To achieve robustness to outliers and noise, a sparse regularizer is introduced into the FRR framework. Beyond subspace clustering, FRR can be used for unsupervised feature extraction. As a non-trivial byproduct, a fast numerical solver is developed for FRR. Experimental results on both synthetic data and real applications validate our theoretical analysis and demonstrate the benefits of FRR for unsupervised visual learning.
ieee international workshop on computational advances in multi sensor adaptive processing | 2009
Arvind Ganesh; Zhouchen Lin; John Wright; Leqin Wu; Yi Ma
This paper studies algorithms for solving the problem of recovering a low-rank matrix with a fraction of its entries arbitrarily corrupted. This problem can be viewed as a robust version of classical PCA, and arises in a number of application domains, including image processing, web data ranking, and bioinformatic data analysis. It was recently shown that under surprisingly broad conditions, it can be exactly solved via a convex programming surrogate that combines nuclear norm minimization and ℓ1-norm minimization. This paper develops and compares two complementary approaches for solving this convex program. The first is an accelerated proximal gradient algorithm directly applied to the primal; while the second is a gradient algorithm applied to the dual problem. Both are several orders of magnitude faster than the previous state-of-the-art algorithm for this problem, which was based on iterative thresholding. Simulations demonstrate the performance improvement that can be obtained via these two algorithms, and clarify their relative merits.
international conference on computer vision | 2013
Canyi Lu; Jiashi Feng; Zhouchen Lin; Shuicheng Yan
This paper studies the subspace segmentation problem. Given a set of data points drawn from a union of subspaces, the goal is to partition them into their underlying subspaces they were drawn from. The spectral clustering method is used as the framework. It requires to find an affinity matrix which is close to block diagonal, with nonzero entries corresponding to the data point pairs from the same subspace. In this work, we argue that both sparsity and the grouping effect are important for subspace segmentation. A sparse affinity matrix tends to be block diagonal, with less connections between data points from different subspaces. The grouping effect ensures that the highly corrected data which are usually from the same subspace can be grouped together. Sparse Subspace Clustering (SSC), by using ℓ1-minimization, encourages sparsity for data selection, but it lacks of the grouping effect. On the contrary, Low-Rank Representation (LRR), by rank minimization, and Least Squares Regression (LSR), by ℓ2-regularization, exhibit strong grouping effect, but they are short in subset selection. Thus the obtained affinity matrix is usually very sparse by SSC, yet very dense by LRR and LSR. In this work, we propose the Correlation Adaptive Subspace Segmentation (CASS) method by using trace Lasso. CASS is a data correlation dependent method which simultaneously performs automatic data selection and groups correlated data together. It can be regarded as a method which adaptively balances SSC and LSR. Both theoretical and experimental results show the effectiveness of CASS.
computer vision and pattern recognition | 2014
Canyi Lu; Jinhui Tang; Shuicheng Yan; Zhouchen Lin
As surrogate functions of L0-norm, many nonconvex penalty functions have been proposed to enhance the sparse vector recovery. It is easy to extend these nonconvex penalty functions on singular values of a matrix to enhance low-rank matrix recovery. However, different from convex optimization, solving the nonconvex low-rank minimization problem is much more challenging than the nonconvex sparse minimization problem. We observe that all the existing nonconvex penalty functions are concave and monotonically increasing on [0, ∞). Thus their gradients are decreasing functions. Based on this property, we propose an Iteratively Reweighted Nuclear Norm (IRNN) algorithm to solve the nonconvex nonsmooth low-rank minimization problem. IRNN iteratively solves a Weighted Singular Value Thresholding (WSVT) problem. By setting the weight vector as the gradient of the concave penalty function, the WSVT problem has a closed form solution. In theory, we prove that IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthetic data and real images demonstrate that IRNN enhances the low-rank matrix recovery compared with state-of-the-art convex algorithms.
computer vision and pattern recognition | 2014
Risheng Liu; Junjie Cao; Zhouchen Lin; Shiguang Shan
Partial Differential Equations (PDEs) have been successful in solving many low-level vision tasks. However, it is a challenging task to directly utilize PDEs for visual saliency detection due to the difficulty in incorporating human perception and high-level priors to a PDE system. Instead of designing PDEs with fixed formulation and boundary condition, this paper proposes a novel framework for adaptively learning a PDE system from an image for visual saliency detection. We assume that the saliency of image elements can be carried out from the relevances to the saliency seeds (i.e., the most representative salient elements). In this view, a general Linear Elliptic System with Dirichlet boundary (LESD) is introduced to model the diffusion from seeds to other relevant points. For a given image, we first learn a guidance map to fuse human prior knowledge to the diffusion system. Then by optimizing a discrete submodular function constrained with this LESD and a uniform matroid, the saliency seeds (i.e., boundary conditions) can be learnt for this image, thus achieving an optimal PDE system to model the evolution of visual saliency. Experimental results on various challenging image sets show the superiority of our proposed learning-based PDEs for visual saliency detection.