Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhu Liang Yu is active.

Publication


Featured researches published by Zhu Liang Yu.


IEEE Transactions on Biomedical Engineering | 2010

An EEG-Based BCI System for 2-D Cursor Control by Combining Mu/Beta Rhythm and P300 Potential

Yuanqing Li; Jinyi Long; Tianyou Yu; Zhu Liang Yu; Chuanchu Wang; Haihong Zhang; Cuntai Guan

Two-dimensional cursor control is an important and challenging issue in EEG-based brain-computer interfaces (BCIs). To address this issue, here we propose a new approach by combining two brain signals including Mu/Beta rhythm during motor imagery and P300 potential. In particular, a motor imagery detection mechanism and a P300 potential detection mechanism are devised and integrated such that the user is able to use the two signals to control, respectively, simultaneously, and independently, the horizontal and the vertical movements of the cursor in a specially designed graphic user interface. A real-time BCI system based on this approach is implemented and evaluated through an online experiment involving six subjects performing 2-D control tasks. The results attest to the efficacy of obtaining two independent control signals by the proposed approach. Furthermore, the results show that the system has merit compared with prior systems: it allows cursor movement between arbitrary positions.


IEEE Transactions on Biomedical Engineering | 2013

A Hybrid BCI System Combining P300 and SSVEP and Its Application to Wheelchair Control

Yuanqing Li; Jiahui Pan; Fei Wang; Zhu Liang Yu

In this paper, a hybrid brain-computer interface (BCI) system combining P300 and steady-state visual evoked potential (SSVEP) is proposed to improve the performance of asynchronous control. The four groups of flickering buttons were set in the graphical user interface. Each group contained one large button in the center and eight small buttons around it, all of which flashed at a fixed frequency (e.g., 7.5 Hz) to evoke SSVEP. At the same time, the four large buttons of the four groups were intensified through shape and color changes in a random order to produce P300 potential. During the control state, the user focused on a desired group of buttons (target buttons) to evoke P300 potential and SSVEP, simultaneously. Discrimination between the control and idle states was based on the detection of both P300 and SSVEP on the same group of buttons. As an application, this method was used to produce a “go/stop” command in real-time wheelchair control. Several experiments were conducted, and data analysis results showed that combining P300 potential and SSVEP significantly improved the performance of the BCI system in terms of detection accuracy and response time.


IEEE Transactions on Antennas and Propagation | 2010

Beampattern Synthesis for Linear and Planar Arrays With Antenna Selection by Convex Optimization

Siew Eng Nai; Wee Ser; Zhu Liang Yu; Huawei Chen

A convex optimization based beampattern synthesis method with antenna selection is proposed for linear and planar arrays. Conjugate symmetric beamforming weights are used so that the upper and non-convex lower bound constraints on the beampattern can be convex. Thus, a mainlobe of an arbitrary beamwidth and response ripple can be obtained. This method can achieve completely arbitrary sidelobe levels. By minimizing a re-weighted objective function based on the magnitudes of the elements in the beamforming weight vector iteratively, the proposed method selects certain antennas in an array to satisfy the prescribed beampattern specifications precisely. Interestingly, a sparse array with fewer antennas (compared to other methods) is produced. This method can design non-uniformly spaced arrays with inter-element spacings larger than one half-wavelength, without the appearance of grating lobes in the resulting beampattern. Simulations are shown using arrays of up to a few hundred antennas to illustrate the practicality of the proposed method.


IEEE Transactions on Signal Processing | 2009

Robust Adaptive Beamformers Based on Worst-Case Optimization and Constraints on Magnitude Response

Zhu Liang Yu; Wee Ser; Meng Hwa Er; Zhenghui Gu; Yuanqing Li

In this paper, novel robust adaptive beamformers are proposed with constraints on array magnitude response. With the transformation from the array output power and the magnitude response to linear functions of the autocorrelation sequence of the array weight, the optimization of an adaptive beamformer, which is often described as a quadratic optimization problem in conventional beamforming methods, is then reformulated as a linear programming (LP) problem. Unlike conventional robust beamformers, the proposed method is able to flexibly control the robust response region with specified beamwidth and response ripple. In practice, an array has many imperfections besides steering direction error. In order to make the adaptive beamformer robust against all kinds of imperfections, worst-case optimization is exploited to reconstruct the robust beamformer. By minimizing array output power with the existence of the worst-case array imperfections, the robust beamforming can be expressed as a second-order cone programming (SOCP) problem. The resultant beamformer possesses superior robustness against arbitrary array imperfections. With the proposed methods, a large robust response region and a high signal-to-interference-plus-noise ratio (SINR) enhancement can be achieved readily. Simple implementation, flexible performance control, as well as significant SINR enhancement, support the practicability of the proposed methods.


IEEE Transactions on Biomedical Engineering | 2009

Voxel Selection in fMRI Data Analysis Based on Sparse Representation

Yuanqiang Li; Praneeth Namburi; Zhu Liang Yu; Cuntai Guan; Jianfeng Feng; Zhenghui Gu

Multivariate pattern analysis approaches toward detection of brain regions from fMRI data have been gaining attention recently. In this study, we introduce an iterative sparse-representation-based algorithm for detection of voxels in functional MRI (fMRI) data with task relevant information. In each iteration of the algorithm, a linear programming problem is solved and a sparse weight vector is subsequently obtained. The final weight vector is the mean of those obtained in all iterations. The characteristics of our algorithm are as follows: 1) the weight vector (output) is sparse; 2) the magnitude of each entry of the weight vector represents the significance of its corresponding variable or feature in a classification or regression problem; and 3) due to the convergence of this algorithm, a stable weight vector is obtained. To demonstrate the validity of our algorithm and illustrate its application, we apply the algorithm to the Pittsburgh Brain Activity Interpretation Competition 2007 functional fMRI dataset for selecting the voxels, which are the most relevant to the tasks of the subjects. Based on this dataset, the aforementioned characteristics of our algorithm are analyzed, and a comparison between our method with the univariate general-linear-model-based statistical parametric mapping is performed. Using our method, a combination of voxels are selected based on the principle of effective/sparse representation of a task. Data analysis results in this paper show that this combination of voxels is suitable for decoding tasks and demonstrate the effectiveness of our method.


IEEE Transactions on Antennas and Propagation | 2012

Linear Aperiodic Array Synthesis Using an Improved Genetic Algorithm

Ling Cen; Zhu Liang Yu; Wee Ser; Wei Cen

A novel algorithm on beam pattern synthesis for linear aperiodic arrays with arbitrary geometrical configuration is presented in this paper. Linear aperiodic arrays are attractive for their advantages on higher spatial resolution and lower sidelobe. However, the advantages are attained at the cost of solving a complex non-linear optimization problem. In this paper, we explain the Improved Genetic Algorithm (IGA) that simultaneously adjusts the weight coefficients and inter-sensor spacings of a linear aperiodic array in more details and extend the investigations to include the effects of mutual coupling and the sensitivity of the Peak Sidelobe Level (PSL) to steering angles. Numerical results show that the PSL of the synthesized beam pattern has been successfully lowered with the IGA when compared with other techniques published in the literature. In addition, the computational cost of our algorithm can be as low as 10% of that of a recently reported genetic algorithm based synthesis method. The excellent performance of IGA makes it a promising optimization algorithm where expensive cost functions are involved.


IEEE Transactions on Signal Processing | 2011

Iterative Robust Minimum Variance Beamforming

Siew Eng Nai; Wee Ser; Zhu Liang Yu; Huawei Chen

Based on worst-case performance optimization, the recently developed adaptive beamformers utilize the uncertainty set of the desired array steering vector to achieve robustness against steering vector mismatches. In the presence of large steering vector mismatches, the uncertainty set has to expand to accommodate the increased error. This degrades the output signal-to-interference-plus-noise ratios (SINRs) of these beamformers since their interference-plus-noise suppression abilities are weakened. In this paper, an iterative robust minimum variance beamformer (IRMVB) is proposed which uses a small uncertainty sphere (and a small flat ellipsoid) to search for the desired array steering vector iteratively. This preserves the interference-plus-noise suppression ability of the proposed beamformer and results in a higher output SINR. Theoretical analysis and simulation results are presented to show the effectiveness of the proposed beamformer.


IEEE Transactions on Circuits and Systems | 2007

Optimal Design of Nearfield Wideband Beamformers Robust Against Errors in Microphone Array Characteristics

Huawei Chen; Wee Ser; Zhu Liang Yu

Nearfield wideband beamformers for microphone arrays have wide applications, such as hands-free telephony, hearing aids, and speech input devices to computers. The existing design approaches for nearfield wideband beamformers are highly sensitive to errors in microphone array characteristics, i.e., microphone gain, phase, and position errors, as well as sound speed errors. In this paper, a robust design approach for nearfield wideband beamformers for microphone arrays is proposed. The robust nearfield wideband beamformers are designed based on the minimax criterion with the worst case performance optimization. The design problems can be formulated as second-order cone programming and be solved efficiently using the well-established polynomial time interior-point methods. Several interesting properties of the robust nearfield wideband beamformers are derived. Numerical examples are given to demonstrate the efficacy of the proposed beamformers in the presence of errors in microphone array characteristics.


IEEE Transactions on Antennas and Propagation | 2010

Linear Sparse Array Synthesis With Minimum Number of Sensors

Ling Cen; Wee Ser; Zhu Liang Yu; Susanto Rahardja; Wei Cen

The number of sensors employed in an array affects the array performance, computational load, and cost. Consequently, the minimization of the number of sensors is of great importance in practice. However, relatively fewer research works have been reported on the later. In this paper, a novel optimization method is proposed to address this issue. In the proposed method, the improved genetic algorithm that has been presented at a conference recently, is used to optimize the weight coefficients and sensor positions of the array. Sensors that contribute the least to the array performance are then removed systematically until the smallest acceptable number of sensors is obtained. Specifically, this paper reports the study on the relationship between the peak sidelobe level and the sensor weights, and uses the later to select the sensors to be removed. Through this approach, the desired beam pattern can be synthesized using the smallest number of sensors efficiently. Numerical results show that the proposed sensor removal method is able to achieve good sidelobe suppression with a smaller number of sensors compared to other existing algorithms. The computational load required by our proposed approach is about one order less than that required by other existing algorithms too.


IEEE Signal Processing Magazine | 2014

Sparse Representation for Brain Signal Processing: A tutorial on methods and applications

Yuanqing Li; Zhu Liang Yu; Ning Bi; Yong Xu; Zhenghui Gu; Shun-ichi Amari

In many cases, observed brain signals can be assumed as the linear mixtures of unknown brain sources/components. It is the task of blind source separation (BSS) to find the sources. However, the number of brain sources is generally larger than the number of mixtures, which leads to an underdetermined model with infinite solutions. Under the reasonable assumption that brain sources are sparse within a domain, e.g., in the spatial, time, or time-frequency domain, we may obtain the sources through sparse representation. As explained in this article, several other typical problems, e.g., feature selection in brain signal processing, can also be formulated as the underdetermined linear model and solved by sparse representation. This article first reviews the probabilistic results of the equivalence between two important sparse solutions - the 0-norm and 1-norm solutions. In sparse representation-based brain component analysis including blind separation of brain sources and electroencephalogram (EEG) inverse imaging, the equivalence is related to the recoverability of the sources. This article also focuses on the applications of sparse representation in brain signal processing, including components extraction, BSS and EEG inverse imaging, feature selection, and classification. Based on functional magnetic resonance imaging (fMRI) and EEG data, the corresponding methods and experimental results are reviewed.

Collaboration


Dive into the Zhu Liang Yu's collaboration.

Top Co-Authors

Avatar

Zhenghui Gu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuanqing Li

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wee Ser

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Meng Hwa Er

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianyou Yu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huawei Chen

Nanjing University of Aeronautics and Astronautics

View shared research outputs
Top Co-Authors

Avatar

Jinyi Long

South China University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge