Zhu Luan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhu Luan.
Journal of The Optical Society of America B-optical Physics | 2003
Liyong Ren; Liren Liu; De’an Liu; Jifeng Zu; Zhu Luan
A theoretical explanation of nonvolatile holographic recording in LiNbO3:Fe:Mn crystals is given based on jointly solving the two-center material equations and the coupled-wave equations. The nonuniformity of the dynamics of the photorefractive grating can be effectively described and analyzed by using this method. The time–space evolution, including the space-charge field, the diffraction efficiency, the light modulation depth, the phases of the space-charge field and the interference field, as well as the relative spatial phase shift between them, is studied for both oxidized and reduced crystals. The optimal conditions for material prescriptions and oxidation–reduction processing are discussed in detail. The bending isophase of the fringe pattern and the redistributed intensities of the two-coupled beams inside the crystal are presented. The theoretical results can confirm and predict experimental results. Some new effects are also discovered, such as: The fixed diffraction efficiency can exceed the saturation diffraction efficiency for strongly recorded gratings; the energy transfer direction between two-coupled beams can be reversed with crystal thickness; and the holographic readout in reduced crystal is always accompanied by fast phase changes, which results in the slow deterioration of the recorded holograms as a result of the production of homogeneous distributions of electrons.
Optics Letters | 2004
Liyong Ren; Liren Liu; De’an Liu; Jifeng Zu; Zhu Luan
An oscillatory characteristic of diffraction is observed as a result of strong beam coupling in a weakly oxidized LiNbO3:Ce:Cu crystal during the recording step in the production of nonvolatile photorefractive holograms. On this basis the optimal switching time from the recording step to the fixing step for high diffraction of a fixed hologram is studied. It is shown that switching after the first diffraction maximum leads theoretically to fixed diffraction of as much as 100% with a suitable switching time. Both an experimental demonstration and a theoretical simulation are presented.
Applied Optics | 2006
Anhu Li; Liren Liu; Jianfeng Sun; Xianghong Zhong; Lijuan Wang; Dean Liu; Zhu Luan
The original scanner for tilting orthogonal double prisms is studied to test the tracking performance in intersatellite laser communications. With a reduction ratio of more than 100 times from the change rate of the angle of beam deviation to that of the tilting angle of each prism, the theoretical analysis performed, as well as the verification experiment, indicates that the scanner can meet the requirements of the scanning accuracy superior to 0.5 microrad with the scanning range greater than 500 microrad and can facilitate the mechanical structure design.
Applied Optics | 2005
Hongzhan Liu; Liren Liu; Rongwei Xu; Zhu Luan
We report the formulation of an ABCD matrix for reflection and refraction of Gaussian light beams at the surface of a parabola of revolution that separate media of different refractive indices based on optical phase matching. The equations for the spot sizes and wave-front radii of the beams are also obtained by using theABCD matrix. With these matrices, we can more conveniently design and evaluate some special optical systems, including these kinds of elements.
Applied Physics Letters | 2007
Ya’nan Zhi; De’an Liu; Weijuan Qu; Zhu Luan; Liren Liu
Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are achieved in the 5 mol % MgO-doped congruent LiNbO3 crystals. The reduction proportion increases exponentially with decreasing irradiation wavelength and decreases exponentially with increasing irradiation wavelength. At one given wavelength, the reduction proportion increases exponentially with increasing irradiation intensity. An assumption is proposed that the reduction of nucleation field is directly related to the defect structure of crystal lattice generated by the complex coaction of incident irradiation field and external electric field. (c) 2007 American Institute of Physics.
Journal of Applied Physics | 2009
Ya’nan Zhi; De’an Liu; Jianfeng Sun; Aimin Yan; Yu Zhou; Zhu Luan; Enwen Dai; Liren Liu; Weijuan Qu
The phase mapping of domain kinetics under the uniform steady-state electric field is achieved and investigated in the LiNbO3 crystals by digital holographic interferometry. We obtained the sequences of reconstructed three-dimensional and two-dimensional wave-field phase distributions during the electric poling in the congruent and near stoichiometric LiNbO3 crystals. The phase mapping of individual domain nucleation and growth in the two crystals are obtained. It is found that both longitudinal and lateral domain growths are not linear during the electric poling. The phase mapping of domain wall motions in the two crystals is also obtained. Both the phase relaxation and the pinning-depinning mechanism are observed during the domain wall motion. The residual phase distribution is observed after the high-speed domain wall motion. The corresponding analyses and discussions are proposed to explain the phenomena.
Applied Physics Letters | 2006
Ya’nan Zhi; Weijuan Qu; De’an Liu; Zhu Luan; Yu Zhou; Liren Liu
The digital holographic interferometry is used in the dynamic and static measurements of phase variation induced by domain inversion. For the first time, to the authors’ knowledge, they observe the existence of ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal. During the domain wall motion, the phase variations are not uniform but have obvious relaxations. In the static measurement, the ridge elevation can vary linearly with the uniform electric field. The reasonable assumptions are proposed to explain these effects.
Journal of The Optical Society of America A-optics Image Science and Vision | 2003
Yu Zhou; Liren Liu; Juan Zhang; De’an Liu; Zhu Luan
The characteristics of light propagating near the axis of a birefringent filter are studied. A generalized formulation to describe the nearly-off-axis transmissivity of a Solc birefringent filter is derived. On this basis, the polarization conoscopic figures of Solc filters with different numbers of birefringent plates are simulated. Furthermore the variation of spectral transmission with angle of incidence is analyzed, and the field-of-view transmissivity and the spectral transmissivity averaged with respect to the spread of incident light are given. Primary experiments for verification are also demonstrated.
Journal of Optics | 2007
Aimin Yan; Liren Liu; De’an Liu; Yu Zhou; Zhu Luan; Chunhua Wang
We obtain analytical solutions of the coupled wave equations that describe the Bragg diffraction of ultrashort pulsed finite beams by a thick planar grating, using two-dimensional coupled wave theory. The diffraction properties for the case of an ultrashort pulsed finite beam with Gaussian profiles in both the time and spatial domains are investigated. The spectral bandwidth of the diffracted beam, the Bragg selectivity bandwidth and the diffraction efficiency of the volume grating are influenced by the geometry parameter and the input bandwidth. Therefore extra attention should be paid to designing optical elements based on volume gratings for use with ultrashort pulsed waves in applications of pulse shaping and processing.
Journal of Optics | 2006
Y. Zhu; Liren Liu; Zhu Luan; Anhu Li
A fast and reliable phase unwrapping (PhU) algorithm, based on the local quality-guided fitting plane, is presented. Its framework depends on the basic plane-approximated assumption for phase values of local pixels and on the phase derivative variance (PDV) quality map. Compared with other existing popular unwrapping algorithms, the proposed algorithm demonstrated improved robustness and immunity to strong noise and high phase variations, given that the plane assumption for local phase is reasonably satisfied. Its effectiveness is demonstrated by computer-simulated and experimental results.