Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zimei Dong is active.

Publication


Featured researches published by Zimei Dong.


Gene Expression Patterns | 2012

Eight genes expression patterns during visual system regeneration in Dugesia japonica.

Zimei Dong; Yanqing Yuwen; Qinghua Wang; Guangwen Chen; Dezeng Liu

Dugesia japonica has become the suitable model system for studying the visual system molecular developmental processes because of their simple structure and high regenerative capacity. To further dissect the molecular events of genetic network controlling the visual system regeneration in D. japonica, we investigated the morphogenesis of regenerating eyes under the stereomicroscope and the transcripts expression levels of eight genes involved in this process by quantitative real-time PCR. The eight genes were Djeya, Djsix-1, Eye53, DjotxA, Djpax6, Djopsin, Djnetrin and 1020HH. The results showed that each gene was of different expression pattern at distinct regeneration stage and these eight genes could be divided into three groups according to the expression levels at different time points and the morphogenesis during eye reconstruction: (1) the early expression group, including Djeya, Djsix-1, Eye53, and DjotxA, which expression levels were significant increase from 1 to 3days after amputation; (2) the medium-term expression group, only including one gene, Djpax6, which expression level reached the peak on day 5; and (3) the late expression genes, including Djopsin, Djnetrin and 1020HH, which gradually increase transcription with the eye regeneration. Our data suggested that eye reconstruction was the results of polygenic services and the genes in the same group might have similar role or function in symphony.


Gene | 2014

The characteristics of sox gene in Dugesia japonica.

Zimei Dong; Changying Shi; Haixia Zhang; He Dou; Fangfang Cheng; Guangwen Chen; Dezeng Liu

Sox genes play important roles in animal developmental processes, including embryogenesis, neural cell stemness, neurogenesis, sex determination, among others. Here, the full length sox gene in planarian Dugesia japonica, named DjsoxB, was cloned using rapid amplification of cDNA ends (RACE). Phylogenetic analysis demonstrates that DjsoxB is highly conserved evolutionarily in metazoans. Whole-mount in situ hybridization found DjsoxB mRNA to be mainly expressed in the head, intestine and mouth in both sexually mature and immature planarians. Moreover, DjsoxB transcripts were detected in the blastema after amputation and throughout the head regeneration processes. The data from real-time PCR showed that the mRNA expression levels of DjsoxB were distinctly up-regulated from 3 to 7days after amputation. These results suggest that DjsoxB gene might be active in CNS formation and functional recovery during head regeneration, maintenance of adult CNS function and the development of other tissues (e.g. intestine) in D. japonica.


Molecular Biology Reports | 2011

Expression analysis of Djsix-1 gene during regeneration of planarian eyespots

Zimei Dong; Yanqing Yuwen; Qinghua Wang; Guangwen Chen; Dezeng Liu

Djsix-1 gene is one of the important eyespots-regulating genes in planarians. In this experiment, the expression of Djsix-1 and morphogenesis of eyespots during planarians eyespots regeneration were investigated. The planarians were subjected to two rounds of transverse amputation. Nineteen time points in the first round and ten ones in the second one during the regeneration of the planarians post-auricle fragments were selected. At different time points, the quantitative expression of Djsix-1 and morphogenesis of eyespots during eyespots regeneration were examined by real-time RT-PCR and paraffin sections. Results showed that the optimal growth temperature for planarians regeneration was 22°C in dark. At this temperature, Djsix-1 gene was first up-regulated at the 30th min after the first round of transverse amputation and its expression level increased at the 24-h time point. The expression level reached peak on day 4 and then began to decrease thereafter. From day 6 to day 9, the expression level was maintained in a relatively stable level. In the second round, Djsix-1 expression reached the peak on the 2nd day after amputation, and then began to decrease and maintained in a relatively stable level from the 4th to the 9th day. Morphological and histological examinations showed that eyespots were observed on the 4th day after amputation in the first round and on the 3rd day in the second round. These results indicated that corresponding relationship existed between eyespots morphogenesis and Djsix-1 quantitative expression. It was also suggested that Djsix-1 promoted neoblasts proliferation at the early stage of eyespots regeneration and regulated morphogenesis of eyespots at the later stage.


Integrative Zoology | 2017

Photokinesis and Djopsin gene expression analysis during the regeneration of planarian eyes.

Zimei Dong; Yanqing Yuwen; Yingxu Sima; Yanping Dong; Huina Zhan; Guangwen Chen; Dezeng Liu

Planarians provide the ideal model for studying eye development, with their simple eye structure and exceptionally rapid regeneration. Here, we observed the eye morphogenesis, photophobic behavior, spectral sensitivity and expression pattern of Djopsin in the freshwater planarian Dugesia japonica. The results showed that: (i) Djopsin encoding the putative protein belonged to the rhabdomeric opsins group and displayed high conservation during animal evolution; (ii) planarians displayed diverse photophobic response to different visible wavelengths and were more sensitive to light blue (495 nm) and yellow (635 nm); (iii) the morphogenesis and functional recovery of eyes were related to the expression pattern of Djopsin during head regeneration; and (iv) Djopsin gene plays a major role in functional recovery during eye regeneration and visual system maintenance in adult planarians.


Cell Stress & Chaperones | 2015

Identification and expression analysis of a heat-shock protein 70 gene in Polycelis sp.

Fangfang Cheng; Zimei Dong; Yanping Dong; Yingxu Sima; Jing Chen; Xiaoyan Li; Guangwen Chen; Dezeng Liu

Heat-shock protein 70 (HSP70) is ubiquitously found in a variety of organisms and plays an important role in cytoprotection, environmental monitoring, and disease resistance. In this study, the full-length complementary DNA (cDNA) of hsp70 from planarian Polycelis sp. was first cloned using rapid amplification of cDNA ends (RACE). The expression levels of Pyhsp70 were analyzed in the presence of various stressors by real-time PCR, and its temporal-spatial expression patterns were also examined in both intact and regenerative animals by whole-mount in situ hybridization. The results show that (1) the deduced amino acid sequence of Pyhsp70 includes three typical HSP70 family signature motifs and is highly conserved during evolution; (2) Pyhsp70 expression is induced by prolonged starvation, tissue damage, and ionic liquid but inhibited by high or low temperatures; and (3) Pyhsp70 mRNA is mainly expressed in the head peripheral region and in the regenerating blastema during regeneration. These results suggest that the highly expressed Pyhsp70 gene may contribute to enhance cytoprotection and tolerance against stress-induced molecular damage, and the migration of neoblasts to the wound, which might also be involved in the proliferation and differentiation of neoblasts. Our work provides basic data for the study of stress responses and regenerative mechanism in freshwater planarians.


Molecular Biology Reports | 2011

Evaluation of endogenous reference genes for analysis of gene expression with real-time RT-PCR during planarian regeneration

Yanqing Yuwen; Zimei Dong; Qinghua Wang; Xiao-juan Sun; Changying Shi; Guangwen Chen

It is important that endogenous reference genes for real-time RT-PCR be empirically evaluated for stability in different cell types, developmental stages, and/or sample treatment. To select the most stable endogenous reference genes during planarian regeneration, three housekeeping genes, 18S rRNA, ACTB and DjEF2, were identified and established expression levels by real-time RT-PCR. The data were analyzed by GeNorm and NormFinder software. Expression levels of the Djsix-1 gene were studied in parallel with ACTB and DjEF2 both or each and 18S rRNA as reference during regeneration. The results showed that ACTB was the most stable expressed reference gene in the planarian regeneration.


Gene | 2015

Identification and expression analysis of a Spsb gene in planarian Dugesia japonica

Zimei Dong; Fangfang Cheng; Yanqing Yuwen; Jing Chen; Xiaoyan Li; He Dou; Haixia Zhang; Guangwen Chen; Dezeng Liu

The SPSB family is comprised of four highly conserved proteins, each containing a C-terminal SOCS box motif and a central SPRY domain. Presently, Spsb genes have been found in mammals and in a few invertebrates, however, the specific functions of these genes are still unknown. In this study, we identified a Spsb gene from the planarian Dugesia japonica and termed it DjSpsb. The temporal and spatial expression patterns of DjSpsb were examined in both intact and regenerative animals, and expression levels were also quantified in response to various stressors. The results show that (1) DjSpsb is highly conserved in evolutionary history in metazoans and is at closer relationship to Spsb1, Spsb2 and Spsb4; (2) DjSpsb mRNA is mainly expressed in the head and also throughout head regeneration processes, particularly, its expression up-regulated observably on day 5 after amputation; (3) DjSpsb is also expressed in the testes and yolk glands; (4) DjSpsb expression is induced by high temperature and ethanol but inhibited by high doses of ionic liquids. The date suggests that the DjSpsb gene might be active in central nervous system (CNS) formation and functional recovery during head regeneration, and it is also involved in the development of germ cells and stress responses in the planarians.


Gene Expression Patterns | 2018

Identification of runt family genes involved in planarian regeneration and tissue homeostasis

Zimei Dong; Yibo Yang; Guangwen Chen; Dezeng Liu

The runt family genes play important roles in physiological processes in eukaryotic organisms by regulation of protein transcription, such as hematopoietic system, proliferation of gastric epithelial cells and neural development. However, it remains unclear about the specific functions of these genes. In this study, the full-length cDNA sequences of two runt genes are first cloned from Dugesia japonica, and their roles are investigated by WISH and RNAi. The results show that: (1) the Djrunts are conserved during evolution; (2) the Djrunts mRNA are widely expressed in intact and regenerative worms, and their expression levels are up-regulated significantly on day 1 after amputation; (3) loss of Djrunts function lead to lysis or regeneration failure in the intact and regenerating worms. Overall, the data suggests that Djrunts play important roles in regeneration and homeostatic maintenance in planarians.


Gene | 2017

DjhnRNPA2/B1-like gene is required for planarian regeneration and tissue homeostasis

Zimei Dong; Tong Yang; Yibo Yang; He Dou; Guangwen Chen

The hnRNPs play important roles in physiological processes in eukaryotic organisms by regulation of pre-mRNA after transcription, including pre-mRNA splicing, mRNA stability, DNA replication and repair and telomere maintenance and so on. However, it remains unclear about the specific functions of these genes. In this study, the full-length cDNA sequence of hnRNPA2/B1-like was first cloned from Dugesia japonica, and its roles were investigated by WISH and RNAi. The results showed that: (1) DjhnRNPA2/B1-like was highly conserved during animal evolution; (2) DjhnRNPA2/B1-like mRNA was mainly distributed each side of the body in intact worms and regenerative blastemas, and its expression levels were up-regulated on days 0 and 5 after amputation; (3) the intact and regenerating worms gradually lysed or lost regeneration capacity after DjhnRNPA2/B1-like RNAi; and (4) DjhnRNPA2/B1-like expression is induced by temperature and heavy metal ion stress. The data suggests that DjhnRNPA2/B1-like is a multiple functional gene, it plays important roles in regeneration and homeostatic maintenance and it is also involved in stress responses in planarians. Our work provides basic data for the study of regenerative mechanism and stress responses in freshwater planarians.


Acta Zoologica Academiae Scientiarum Hungaricae | 2017

A new species of Polycelis (Platyhelminthes, Tricladida, Planariidae) from China

Zimei Dong; Guangwen Chen; He-Cai Zhang; Dezeng Liu

In this paper, a new species of Polycelis of the family Planariidae from China is described. Mature individuals have 80–140 eyespots; the testes are well-developed and most of them occupy the entire dorso-ventral space; the penis is a long cone with well-developed musculature; the boundary between the penis bulb and penis papilla is vague and the bulbar cavity is not observed; the bursal canal is surrounded by a well-developed coat of circular muscles, and a thin layer of longitudinal muscles. The karyotype shows a diploid complement of 38 chromosomes, with the formula 2n = 38 = 24m + 14sm.

Collaboration


Dive into the Zimei Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dezeng Liu

Henan Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanping Dong

Henan Normal University

View shared research outputs
Top Co-Authors

Avatar

Yingxu Sima

Henan Normal University

View shared research outputs
Top Co-Authors

Avatar

He Dou

Henan Normal University

View shared research outputs
Top Co-Authors

Avatar

Qinghua Wang

Henan Normal University

View shared research outputs
Top Co-Authors

Avatar

Haixia Zhang

Henan Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge