Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziniu Yu is active.

Publication


Featured researches published by Ziniu Yu.


Green Chemistry | 2006

Dissolution of cellulose with ionic liquids and its application: a mini-review

Shengdong Zhu; Yuanxin Wu; Qiming Chen; Ziniu Yu; Cunwen Wang; Shiwei Jin; Yigang Ding; Gang Wu

Dissolution of cellulose with ionic liquids allows the comprehensive utilization of cellulose by combining two major green chemistry principles: using environmentally preferable solvents and bio-renewable feed-stocks. In this paper, the dissolution of cellulose with ionic liquids and its application were reviewed. Cellulose can be dissolved, without derivation, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Microwave heating significantly accelerates the dissolution process. Cellulose can be easily regenerated from its ionic liquid solutions by addition of water, ethanol or acetone. After its regeneration, the ionic liquids can be recovered and reused. Fractionation of lignocellulosic materials and preparation of cellulose derivatives and composites are two of its typical applications. Although some basic studies, such as economical syntheses of ionic liquids and studies of ionic liquid toxicology, are still much needed, commercialization of these processes has made great progress in recent years.


PLOS ONE | 2009

The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus.

Hongbo Zhou; Zhengjun Yu; Yong Hu; Jiagang Tu; Wei Zou; Yaping Peng; Jiping Zhu; Yongtao Li; Anding Zhang; Ziniu Yu; Zhiping Ye; Huanchun Chen; Meilin Jin

The variation of highly pathogenic avian influenza H5N1 virus results in gradually increased virulence in poultry, and human cases continue to accumulate. The neuraminidase (NA) stalk region of influenza virus varies considerably and may associate with its virulence. The NA stalk region of all N1 subtype influenza A viruses can be divided into six different stalk-motifs, H5N1/2004-like (NA-wt), WSN-like, H5N1/97-like, PR/8-like, H7N1/99-like and H5N1/96-like. The NA-wt is a special NA stalk-motif which was first observed in H5N1 influenza virus in 2000, with a 20-amino acid deletion in the 49th to 68th positions of the stalk region. Here we show that there is a gradual increase of the special NA stalk-motif in H5N1 isolates from 2000 to 2007, and notably, the special stalk-motif is observed in all 173 H5N1 human isolates from 2004 to 2007. The recombinant H5N1 virus with the special stalk-motif possesses the highest virulence and pathogenicity in chicken and mice, while the recombinant viruses with the other stalk-motifs display attenuated phenotype. This indicates that the special stalk-motif has contributed to the high virulence and pathogenicity of H5N1 isolates since 2000. The gradually increasing emergence of the special NA stalk-motif in H5N1 isolates, especially in human isolates, deserves attention by all.


Waste Management | 2011

Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production

Qing Li; Longyu Zheng; Ning Qiu; Hao Cai; Jeffery K. Tomberlin; Ziniu Yu

Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff.


Environmental Entomology | 2008

Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure.

Qiaolin Liu; Jeffery K. Tomberlin; Jeff A. Brady; Michelle R. Sanford; Ziniu Yu

Abstract Escherichia coli labeled with a green fluorescent protein was inoculated into sterile dairy manure at 7.0 log cfu/g. Approximately 125 black soldier fly larvae were placed in manure inoculated and homogenized with E. coli. Manure inoculated with E. coli but without black soldier fly larvae served as the control. For the first experiment, larvae were introduced into 50, 75, 100, or 125 g sterilized dairy manure inoculated and homogenized with E. coli and stored 72 h at 27°C. Black soldier fly larvae significantly reduced E. coli counts in all treatments. However, varying the amount of manure provided the black soldier fly larvae significantly affected their weight gain and their ability to reduce E. coli populations present. For the second experiment, larvae were introduced into 50 g manure inoculated with E. coli and stored for 72 h at 23, 27, 31, or 35°C. Minimal bacterial growth was recorded in the control held at 35°C and was excluded from the analysis. Black soldier fly larvae significantly reduced E. coli counts in manure held at remaining temperatures. Accordingly, temperature significantly influenced the ability of black soldier fly larvae to develop and reduce E. coli counts with greatest suppression occurring at 27°C.


Applied Microbiology and Biotechnology | 2008

Novel roles of Bacillus thuringiensis to control plant diseases

Yi Zhou; Yong-Lark Choi; Ming Sun; Ziniu Yu

Bacillus thuringiensis is well known as an effective bio-insecticidal bacterium. However, the roles of B. thuringiensis to control plant diseases are not paid great attention to. In recent years, many new functions in protecting plants from pathogen infection have been discovered. For example, acyl homoserine lactone lactonase produced by B. thuringiensis can open the lactone ring of N-acyl homoserine lactone, a signal molecule in the bacterial quorum-sensing system. This in turn, significantly silences bacterial virulence. This finding resulted in the development of a new strategy against plant bacterial diseases by quenching bacterial quorum sensing. Another new discovery about B. thuringiensis function is zwittermicin A, a linear aminopolyol antibiotic with high activity against the Oomycetes and their relatives, as well as some gram-negative bacteria. This paper summarized the relative progresses of B. thuringiensis in plant disease control and its favorable application prospects.


Applied Microbiology and Biotechnology | 2015

A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae)

Baneshwar Singh; Tawni L. Crippen; Longyu Zheng; Andrew T. Fields; Ziniu Yu; Qun Ma; Thomas K. Wood; Scot E. Dowd; Micah Flores; Jeffery K. Tomberlin; Aaron M. Tarone

Lucilia Robineau-Desvoidy (Diptera: Calliphoridae) is a blow fly genus of forensic, medical, veterinary, and agricultural importance. This genus is also famous because of its beneficial uses in maggot debridement therapy (MDT). Although the genus is of considerable economic importance, our knowledge about microbes associated with these flies and how these bacteria are horizontally and trans-generationally transmitted is limited. In this study, we characterized bacteria associated with different life stages of Lucilia sericata (Meigen) and Lucilia cuprina (Wiedemann) and in the salivary gland of L. sericata by using 16S rDNA 454 pyrosequencing. Bacteria associated with the salivary gland of L. sericata were also characterized using light and transmission electron microscopy (TEM). Results from this study suggest that the majority of bacteria associated with these flies belong to phyla Proteobacteria, Firmicutes, and Bacteroidetes, and most bacteria are maintained intragenerationally, with a considerable degree of turnover from generation to generation. In both species, second-generation eggs exhibited the highest bacterial phylum diversity (20xa0% genetic distance) than other life stages. The Lucilia sister species shared the majority of their classified genera. Of the shared bacterial genera, Providencia, Ignatzschineria, Lactobacillus, Lactococcus, Vagococcus, Morganella, and Myroides were present at relatively high abundances. Lactobacillus, Proteus, Diaphorobacter, and Morganella were the dominant bacterial genera associated with a survey of the salivary gland of L. sericata. TEM analysis showed a sparse distribution of both Gram-positive and Gram-negative bacteria in the salivary gland of L. sericata. There was more evidence for horizontal transmission of bacteria than there was for trans-generational inheritance. Several pathogenic genera were either amplified or reduced by the larval feeding on decomposing liver as a resource. Overall, this study provides information on bacterial communities associated with different life stages of Lucilia and their horizontal and trans-generational transmission, which may help in the development of better vector-borne disease management and MDT methods.


Molecular & Cellular Proteomics | 2013

The Metabolic Regulation of Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis Revealed by Transcriptomics and Proteomics

Jieping Wang; Han Mei; Cao Zheng; Hongliang Qian; Cui Cui; Yang Fu; Jianmei Su; Ziduo Liu; Ziniu Yu; Jin He

Bacillus thuringiensis is a well-known entomopathogenic bacterium used worldwide as an environmentally compatible biopesticide. During sporulation, B. thuringiensis accumulates a large number of parasporal crystals consisting of insecticidal crystal proteins (ICPs) that can account for nearly 20–30% of the cells dry weight. However, the metabolic regulation mechanisms of ICP synthesis remain to be elucidated. In this study, the combined efforts in transcriptomics and proteomics mainly uncovered the following 6 metabolic regulation mechanisms: (1) proteases and the amino acid metabolism (particularly, the branched-chain amino acids) became more active during sporulation; (2) stored poly-β-hydroxybutyrate and acetoin, together with some low-quality substances provided considerable carbon and energy sources for sporulation and parasporal crystal formation; (3) the pentose phosphate shunt demonstrated an interesting regulation mechanism involving gluconate when CT-43 cells were grown in GYS medium; (4) the tricarboxylic acid cycle was significantly modified during sporulation; (5) an obvious increase in the quantitative levels of enzymes and cytochromes involved in energy production via the electron transport system was observed; (6) most F0F1-ATPase subunits were remarkably up-regulated during sporulation. This study, for the first time, systematically reveals the metabolic regulation mechanisms involved in the supply of amino acids, carbon substances, and energy for B. thuringiensis spore and parasporal crystal formation at both the transcriptional and translational levels.


Journal of Medical Entomology | 2013

A Survey of Bacterial Diversity From Successive Life Stages of Black Soldier Fly (Diptera: Stratiomyidae) by Using 16S rDNA Pyrosequencing

Longyu Zheng; Tawni L. Crippen; Baneshwar Singh; Aaron M. Tarone; Scot E. Dowd; Ziniu Yu; Thomas K. Wood; Jeffery K. Tomberlin

ABSTRACT n Sustainable methods for managing waste associated with people and animals have been proposed in the past. Black soldier fly, Hermetia illucens (L.), larvae represent one of the more promising methods. Larvae reduce dry matter, bacteria, offensive odor, and house fly populations. Prepupae can be used as feedstuff for livestock. However, it is not known if such a method results in the proliferation of potential pathogens. Although some bacterial species have been cultured and identified from black soldier fly, a true appreciation of fly associated bacterial diversity is not known. Such information is needed to understand pathogen colonization on decomposing animal and plant waste in the presence of black soldier fly larvae as well as develop research strategies for maximizing the use of this fly to reduce waste without risking environmental harm. Using 454 sequencing, we surveyed bacterial diversity associated with successive life stages of the black soldier fly reared on plant material. Bacteria diversity classified (99.8%) across all life stages spanned six bacterial phyla with >80% bootstrap support. Bacteroidetes and Proteobacteria were the most dominant phyla associated with the black soldier fly accounting for two-thirds of the fauna identified. Many of these bacteria would go undetected because of their inability to be cultured.


Applied Microbiology and Biotechnology | 2010

Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation

Donghai Peng; Xiaohui Xu; Weixing Ye; Ziniu Yu; Ming Sun

The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1, which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops.


Journal of Insect Science | 2010

An Artificial Light Source Influences Mating and Oviposition of Black Soldier Flies, Hermetia illucens

Jibin Zhang; Ling Huang; Jin He; Jeffery K. Tomberlin; Jianhong Li; Chaoliang Lei; Ming Sun; Ziduo Liu; Ziniu Yu

Abstract Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28° C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight.

Collaboration


Dive into the Ziniu Yu's collaboration.

Top Co-Authors

Avatar

Ming Sun

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jin He

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengdong Zhu

Wuhan Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Donghai Peng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lifang Ruan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shouwen Chen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lin Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li-Jun Bi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiming Chen

Wuhan Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge