Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziyi Yin is active.

Publication


Featured researches published by Ziyi Yin.


Molecular Plant Pathology | 2016

Phosphodiesterase MoPdeH targets MoMck1 of the conserved mitogen-activated protein (MAP) kinase signalling pathway to regulate cell wall integrity in rice blast fungus Magnaporthe oryzae.

Ziyi Yin; Wei Tang; Jingzhen Wang; Xinyu Liu; Lina Yang; Chuyun Gao; Jinlong Zhang; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

In the rice blast fungus Magnaporthe oryzae, the high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance through an unknown mechanism. By utilizing affinity purification, we found that MoPdeH interacts with MoMck1, one of the components of the mitogen-activated protein (MAP) kinase cascade that regulates CWI. Overexpression of MoMCK1 suppressed defects in autolysis and pathogenicity of the ΔMopdeH mutant, although partially, suggesting that MoPdeH plays a critical role in CWI maintenance mediated by the MAP kinase pathway. We found that MoMck1 and two other MAP kinase cascade components, MoMkk1 and MoMps1, modulate intracellular cAMP levels by regulating the expression of MoPDEH through a feedback loop. In addition, disruption of MoMKK1 resulted in less aerial hyphal formation, defective asexual development and attenuated pathogenicity. Moreover, MoMkk1 plays a role in the response to osmotic stress via regulation of MoOsm1 phosphorylation levels, whereas endoplasmic reticulum (ER) stress enhances MoMps1 phosphorylation and loss of the MAP kinase cascade component affects the unfolded protein response (UPR) pathway. Taken together, our findings demonstrate that MoPdeH functions upstream of the MoMck1-MoMkk1-MoMps1 MAP kinase pathway to regulate CWI, and that MoPdeH also mediates crosstalk between the cAMP signalling pathway, the osmotic sensing high osmolarity glycerol (HOG) pathway and the dithiothreitol (DTT)-induced UPR pathway in M. oryzae.


Molecular Plant Pathology | 2015

Phosphodiesterase MoPdeH targets MoMck1 of the conserved MAP kinase signaling pathway to regulate cell wall integrity in rice blast fungus Magnaporthe oryzae

Ziyi Yin; Wei Tang; Jingzhen Wang; Xinyu Liu; Lina Yang; Chuyun Gao; Jinlong Zhang; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

In the rice blast fungus Magnaporthe oryzae, the high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance through an unknown mechanism. By utilizing affinity purification, we found that MoPdeH interacts with MoMck1, one of the components of the mitogen-activated protein (MAP) kinase cascade that regulates CWI. Overexpression of MoMCK1 suppressed defects in autolysis and pathogenicity of the ΔMopdeH mutant, although partially, suggesting that MoPdeH plays a critical role in CWI maintenance mediated by the MAP kinase pathway. We found that MoMck1 and two other MAP kinase cascade components, MoMkk1 and MoMps1, modulate intracellular cAMP levels by regulating the expression of MoPDEH through a feedback loop. In addition, disruption of MoMKK1 resulted in less aerial hyphal formation, defective asexual development and attenuated pathogenicity. Moreover, MoMkk1 plays a role in the response to osmotic stress via regulation of MoOsm1 phosphorylation levels, whereas endoplasmic reticulum (ER) stress enhances MoMps1 phosphorylation and loss of the MAP kinase cascade component affects the unfolded protein response (UPR) pathway. Taken together, our findings demonstrate that MoPdeH functions upstream of the MoMck1-MoMkk1-MoMps1 MAP kinase pathway to regulate CWI, and that MoPdeH also mediates crosstalk between the cAMP signalling pathway, the osmotic sensing high osmolarity glycerol (HOG) pathway and the dithiothreitol (DTT)-induced UPR pathway in M. oryzae.


PLOS Pathogens | 2017

MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae

Xiao Li; Chuyun Gao; Lianwei Li; Muxing Liu; Ziyi Yin; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

Eukaryotic cells respond to environmental stimuli when cell surface receptors are bound by environmental ligands. The binding initiates a signal transduction cascade that results in the appropriate intracellular responses. Studies have shown that endocytosis is critical for receptor internalization and signaling activation. In the rice blast fungus Magnaporthe oryzae, a non-canonical G-protein coupled receptor, Pth11, and membrane sensors MoMsb2 and MoSho1 are thought to function upstream of G-protein/cAMP signaling and the Pmk1 MAPK pathway to regulate appressorium formation and pathogenesis. However, little is known about how these receptors or sensors are internalized and transported into intracellular compartments. We found that the MoEnd3 protein is important for endocytic transport and that the ΔMoend3 mutant exhibited defects in efficient internalization of Pth11 and MoSho1. The ΔMoend3 mutant was also defective in Pmk1 phosphorylation, autophagy, appressorium formation and function. Intriguingly, restoring Pmk1 phosphorylation levels in ΔMoend3 suppressed most of these defects. Moreover, we demonstrated that MoEnd3 is subject to regulation by MoArk1 through protein phosphorylation. We also found that MoEnd3 has additional functions in facilitating the secretion of effectors, including Avr-Pia and AvrPiz-t that suppress rice immunity. Taken together, our findings suggest that MoEnd3 plays a critical role in mediating receptor endocytosis that is critical for the signal transduction-regulated development and virulence of M. oryzae.


Molecular Plant Pathology | 2017

The thioredoxin MoTrx2 protein mediates reactive oxygen species (ROS) balance and controls pathogenicity as a target of the transcription factor MoAP1 in Magnaporthe oryzae

Jingzhen Wang; Ziyi Yin; Wei Tang; Xingjia Cai; Chuyun Gao; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

We have shown previously that the transcription factor MoAP1 governs the oxidative response and is important for pathogenicity in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we have identified thioredoxin MoTrx2 as a target of MoAP1 in M. oryzae. Thioredoxins are highly conserved 12-kDa oxidoreductase enzymes containing a dithiol-disulfide active site, and function as antioxidants against free radicals, such as reactive oxygen species (ROS). In yeast and fungi, thioredoxins are important for oxidative stress tolerance and growth. To study the functions of MoTrx2, we generated ΔMotrx2 mutants that exhibit various defects, including sulfite assimilation, asexual and sexual differentiation, infectious hyphal growth and pathogenicity. We found that ΔMotrx2 mutants possess a defect in the scavenging of ROS during host cell invasion and in the active suppression of the rice defence response. We also found that ΔMotrx2 mutants display higher intracellular ROS levels during conidial germination, but lower peroxidase and laccase activities, which contribute to the attenuation in virulence. Given that the function of MoTrx2 overlaps that of MoAP1 in the stress response and pathogenicity, our findings further indicate that MoTrx2 is a key thioredoxin protein whose function is subjected to transcriptional regulation by MoAP1 in M. oryzae.


Molecular Plant Pathology | 2016

The thioredoxin MoTrx2 protein mediates ROS balance and controls pathogenicity as a target of the transcription factor MoAP1 in Magnaporthe oryzae

Jingzhen Wang; Ziyi Yin; Wei Tang; Xingjia Cai; Chuyun Gao; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

We have shown previously that the transcription factor MoAP1 governs the oxidative response and is important for pathogenicity in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we have identified thioredoxin MoTrx2 as a target of MoAP1 in M. oryzae. Thioredoxins are highly conserved 12-kDa oxidoreductase enzymes containing a dithiol-disulfide active site, and function as antioxidants against free radicals, such as reactive oxygen species (ROS). In yeast and fungi, thioredoxins are important for oxidative stress tolerance and growth. To study the functions of MoTrx2, we generated ΔMotrx2 mutants that exhibit various defects, including sulfite assimilation, asexual and sexual differentiation, infectious hyphal growth and pathogenicity. We found that ΔMotrx2 mutants possess a defect in the scavenging of ROS during host cell invasion and in the active suppression of the rice defence response. We also found that ΔMotrx2 mutants display higher intracellular ROS levels during conidial germination, but lower peroxidase and laccase activities, which contribute to the attenuation in virulence. Given that the function of MoTrx2 overlaps that of MoAP1 in the stress response and pathogenicity, our findings further indicate that MoTrx2 is a key thioredoxin protein whose function is subjected to transcriptional regulation by MoAP1 in M. oryzae.


Molecular Plant Pathology | 2018

Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae

Wei Tang; Chuyun Gao; Jingzhen Wang; Ziyi Yin; Jinlong Zhang; Jun Ji; Haifeng Zhang; Xiaobo Zheng; Zhengguang Zhang; Ping Wang

Actin motor myosin proteins are the driving forces behind the active transport of vesicles, and more than 20 classes of myosin have been found to contribute to a wide range of cellular processes, including endocytosis and exocytosis, autophagy, cytokinesis and the actin cytoskeleton. In Saccharomyces cerevisiae, class V myosin Myo2 (ScMyo2p) is important for the transport of distinct sets of cargo to regions of the cell along the cytoskeleton for polarized growth. To study whether myosins play a role in the formation or function of the appressorium (infectious structure) of the rice blast fungus Magnaporthe oryzae, we identified MoMyo5 as an orthologue of ScMyo2p and characterized its function. Targeted gene disruption revealed that MoMyo5 is required for intracellular transport and is essential for hyphal growth and asexual reproduction. Although the ΔMomyo5 mutant could form appressorium-like structures, the structures were unable to penetrate host cells and were therefore non-pathogenic. We further found that MoMyo5 moves dynamically from the cytoplasm to the hyphal tip, where it interacts with MoSec4, a Rab GTPase involved in secretory transport, hyphal growth and fungal pathogenicity. Our studies indicate that class V myosin and its translocation are tightly coupled with hyphal growth, asexual reproduction, appressorium function and pathogenicity in the rice blast fungus.


Scientific Reports | 2017

MoVrp1, a putative verprolin protein, is required for asexual development and infection in the rice blast fungus Magnaporthe oryzae

Lin Huang; Shengpei Zhang; Ziyi Yin; Muxing Liu; Bing Li; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

Endocytosis is a crucial cellular process in eukaryotic cells which involves clathrin and/or adaptor proteins, lipid kinases, phosphatases and the actin cytoskeleton. Verprolin proteins, such as Vrp1 in Saccharomyces cerevisiae, are conserved family proteins that regulate actin binding and endocytosis. Here, we identified and characterized MoVrp1 as the yeast Vrp1 homolog in Magnaporthe oryzae. Deletion of the MoVRP1 gene resulted in defects in vegetative growth, asexual development, and infection of the host plant. The ∆Movrp1 mutants also exhibited decreased extracellular peroxidase and laccase activities and showed defects in colony pigmentation, hyphal surface hydrophobicity, cell wall integrity, autophagy, endocytosis, and secretion of avirulent effector. Our studies provided new evidences that MoVrp1 involved in actin cytoskeleton is important for growth, morphogenesis, cellular trafficking, and fungal pathogenesis.


bioRxiv | 2018

The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae

Xiao Li; Kaili Zhong; Ziyi Yin; Jiexiong Hu; Lianwei Li; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

Regulator of G-protein signaling (RGS) proteins primarily function as GTPase-accelerating proteins (GAPs) to promote GTP hydrolysis of Gα subunits, thereby regulating G-protein mediated signaling. RGS proteins could also contain additional domains such as GoLoco to inhibit GDP dissociation. The rice blast fungus Magnaporthe oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8) that have shared and distinct functions in growth, appressorium formation and pathogenicity. Interestingly, MoRgs7 and MoRgs8 contain a C-terminal seven-transmembrane domain (7-TM) motif typical of G-protein coupled receptor (GPCR) proteins, in addition to the conserved RGS domain. We found that MoRgs7, together with Gα MoMagA but not MoRgs8, undergoes endocytic transport from the plasma membrane to the endosome upon sensing of surface hydrophobicity. We also found that MoRgs7 can interact with hydrophobic surfaces via a hydrophobic interaction, leading to the perception of environmental hydrophobic cues. Moreover, we found that MoRgs7-MoMagA endocytosis is regulated by actin patch-associated protein MoCrn1, linking it to cAMP signaling. Our studies provided evidence suggesting that MoRgs7 could also function in a GPCR-like manner to sense environmental signals and it, together with additional proteins of diverse functions, promotes cAMP signaling required for developmental processes underlying appressorium function and pathogenicity. Author summary The 7-TM domain is considered the hallmark of GPCR proteins, which activate G proteins upon ligand binding and undergo endocytosis for regeneration or recycling. Among eight RGS and RGS-like proteins of M. oryzae, MoRgs7 and MoRgs8 contain the 7-TM domain in addition to the RGS domain. We found that MoRgs7 can form hydrophobic interactions with the hydrophobic surface. This interaction is important in sensing hydrophobic cues by the fungus. We also found that, in response to surface hydrophobicity, MoRgs7 couples with Gα subunit MoMagA to undergo endocytosis leading to the activation of cAMP signaling. Moreover, we found that such an endocytic event requires functions of the actin-binding protein MoCrn1. Our results revealed MoRgs7 functions as a GPCR-like receptor protein to sense surface cues and activate signaling required for pathogenesis, providing new insights into G-protein regulatory mechanisms in this and other pathogenic fungi.


Molecular Plant Pathology | 2018

New findings on phosphodiesterases, MoPdeH and MoPdeL, in Magnaporthe oryzae revealed by structural analysis

Lina Yang; Ziyi Yin; Xi Zhang; Wanzheng Feng; Yuhan Xiao; Haifeng Zhang; Xiaobo Zheng; Zhengguang Zhang

The cyclic adenosine monophosphate (cAMP) signalling pathway mediates signal communication and sensing during infection-related morphogenesis in eukaryotes. Many studies have implicated cAMP as a critical mediator of appressorium development in the rice blast fungus, Magnaporthe oryzae. The cAMP phosphodiesterases, MoPdeH and MoPdeL, as key regulators of intracellular cAMP levels, play pleiotropic roles in cell wall integrity, cellular morphology, appressorium formation and infectious growth in M. oryzae. Here, we analysed the roles of domains of MoPdeH and MoPdeL separately or in chimeras. The results indicated that the HD and EAL domains of MoPdeH are indispensable for its phosphodiesterase activity and function. Replacement of the MoPdeH HD domain with the L1 and L2 domains of MoPdeL, either singly or together, resulted in decreased cAMP hydrolysis activity of MoPdeH. All of the transformants exhibited phenotypes similar to that of the ΔMopdeH mutant, but also revealed that EAL and L1 play additional roles in conidiation, and that L1 is involved in infectious growth. We further found that the intracellular cAMP level is important for surface signal recognition and hyphal autolysis. The intracellular cAMP level negatively regulates Mps1-MAPK and positively regulates Pmk1-MAPK in the rice blast fungus. Our results provide new information to better understand the cAMP signalling pathway in the development, differentiation and plant infection of the fungus.


Environmental Microbiology | 2018

MoMip11, a MoRgs7-interacting protein, functions as a scaffolding protein to regulate cAMP signaling and pathogenicity in the rice blast fungus Magnaporthe oryzae : MoMip11 regulates cAMP signaling in M. oryzae

Ziyi Yin; Xiaofang Zhang; Jingzhen Wang; Lina Yang; Wanzhen Feng; Chen Chen; Chuyun Gao; Haifeng Zhang; Xiaobo Zheng; Ping Wang; Zhengguang Zhang

The rice blast fungus Magnaporthe oryzae has eight regulators of G-protein signaling (RGS) and RGS-like proteins (MoRgs1 to MoRgs8) that exhibit both distinct and shared regulatory functions in the growth, differentiation and pathogenicity of the fungus. We found MoRgs7 with a unique RGS-seven transmembrane (7-TM) domain motif is localized to the highly dynamic tubule-vesicular compartments during early appressorium differentiation followed by gradually degradation. To explore whether this involves an active signal perception of MoRgs7, we identified a Gbeta-like/RACK1 protein homolog in M. oryzae MoMip11 that interacts with MoRgs7. Interestingly, MoMip11 selectively interacted with several components of the cAMP regulatory pathway, including Gα MoMagA and the high-affinity phosphodiesterase MoPdeH. We further showed that MoMip11 promotes MoMagA activation and suppresses MoPdeH activity thereby upregulating intracellular cAMP levels. Moreover, MoMip11 is required for the response to multiple stresses, a role also shared by Gbeta-like/RACK1 adaptor proteins. In summary, we revealed a unique mechanism by which MoMip11 links MoRgs7 and G-proteins to reugulate cAMP signaling, stress responses and pathogenicity of M. oryzae. Our studies revealed the multitude of regulatory networks that govern growth, development and pathogenicity in this important causal agent of rice blast.

Collaboration


Dive into the Ziyi Yin's collaboration.

Top Co-Authors

Avatar

Haifeng Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Zheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhengguang Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chuyun Gao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jingzhen Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lina Yang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Tang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinlong Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Muxing Liu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinyu Liu

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge