Zizhuo Xing
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zizhuo Xing.
Biotechnology and Bioengineering | 2009
Zizhuo Xing; Brian M. Kenty; Zheng Jian Li; Steven S. Lee
Bioprocess scale‐up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell‐free mixing studies were performed in production scale 5,000‐L bioreactors to evaluate scale‐up issues. Using the current bioreactor configuration, the 5,000‐L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5‐ and 20‐L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000‐L configuration can only support a maximum viable cell density of 7 × 106 cells mL−1. Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000‐L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing‐related engineering parameters in the 5,000‐L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed‐batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000‐L bioreactors may need optimizing to mitigate the risk of different performance upon process scale‐up. Biotechnol. Bioeng. 2009;103: 733–746.
Biotechnology and Bioengineering | 2010
Michael C. Borys; Nimish G. Dalal; Nicholas R. Abu-Absi; Sarwat F. Khattak; Ying Jing; Zizhuo Xing; Zheng Jian Li
CHO cells express glycoproteins containing both the N‐acetylneuraminic acid (Neu5Ac) and minor amounts of the N‐glycolylneuraminic acid (Neu5Gc) forms of sialic acid. As Neu5Gc is not expressed in humans and can be recognized as a foreign epitope, there is the potential for immunogenicity issues for glycoprotein therapeutics. During process development of a glycosylated fusion protein expressed by CHO cells, a number of culture conditions were identified that affected the Neu5Gc content of the recombinant glycoprotein. Sodium butyrate (SB), a well‐known additive reported to enhance recombinant protein productivity in specific cases, minimally affected product titers here, but did decrease Neu5Gc levels by 50–62%. A shift in culture temperature to a lower value after the exponential growth phase was used to extend the culture period. It was found that the Neu5Gc levels were 59% lower when the temperature shift occurred later near the stationary phase of the culture compared to an early‐temperature shift, near the end of the exponential growth phase. Studies on the effects of pCO2 with this product showed that the Neu5Gc levels were 46% lower at high pCO2 conditions (140 mmHg) compared to moderate pCO2 levels (20–80 mmHg). Finally, a comparison of sodium carbonate versus sodium hydroxide as the base used for pH control resulted in a reproducible 33% decrease in Neu5Gc in bioreactors using sodium hydroxide. These results are of practical importance as SB is a commonly tested additive, and the other factors affecting Neu5Gc can conveniently be used to reduce or control Neu5Gc in processes for the manufacture of glycoprotein therapeutics. Biotechnol. Bioeng. 2010;105: 1048–1057.
Biotechnology Progress | 2011
Yueming Qian; Sarwat F. Khattak; Zizhuo Xing; Aiqing He; Paul S. Kayne; Nan-Xin Qian; Shih-Hsie Pan; Zheng Jian Li
This study reports the effects of varying concentrations of copper sulfate on the metabolic and gene transcriptional profile of a recombinant Chinese hamster ovary (CHO) cell line producing an immunoglobulin G (IgG)‐fusion protein (B0). Addition of 50 μM copper sulfate significantly decreased lactate accumulation in the cultures while increasing viable cell density and protein titer. These changes could be seen from day 6 and became increasingly evident with culture duration. Reducing the copper sulfate concentration to 5 μM retained all the above beneficial effects, but with the added benefit of reduced levels of the aggregated form of the B0 protein. To profile the cellular changes due to copper sulfate addition at the transcriptional level, Affymetrix® CHO microarrays were used to identify differentially expressed genes related to reduced cellular stresses and facilitated cell cycling. Based on the microarray results, down‐regulation of the transferrin receptor and lactate dehydrogenase, and up‐regulation of a cytochrome P450 family‐2 polypeptide were then confirmed by Western blotting. These results showed that copper played a critical role in cell metabolism and productivity on recombinant CHO cells and highlighted the usefulness of microarray data for better understanding biological responses on medium modification.
Biotechnology Journal | 2014
Yueming Qian; Zizhuo Xing; Sherry Lee; Nancy A. Mackin; Aiqing He; Paul S. Kayne; Qin He; Nan-Xin Qian; Zheng Jian Li
Shake flasks and bench-top bioreactors are widely used for cell culture process development, however, culture performances significantly differ between them. In order to apply the results received from small-scale cultures to production scale, it is important to understand the mechanisms underlying the differences between various culture systems. This study analyzes the expression patterns of Chinese hamster ovary (CHO) cells producing IgG-fusion protein B0 cultured in shake flasks and 5-L bench-top bioreactors by CHO-specific DNA microarrays. The data show that hypoxia was present in shake flask cultures but not in controlled, bench-top bioreactors. Hypoxic conditions appeared to be associated with epigenetic repression resulting in decreased cell culture performance and protein productivity, which is also present during large-scale bioreactor operations due to oxygen gradients. High protein productivity was associated with increased cellular machinery for protein transport and secretion in conjunction with decreased epigenetic repression in bench-top bioreactor cultivation. Metal ions could improve cell growth and protein production under hypoxia and this condition could be mimicked in small-scale bioreactors to facilitate cell culture process scale-up.
Biotechnology and Bioengineering | 2017
Zizhuo Xing; Amanda M. Lewis; Michael C. Borys; Zheng Jian Li
Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas‐residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas‐residence time and gas CO2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 106 cells mL−1) for two products in 5,000‐L and 25,000‐L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184–1194.
Protein Expression and Purification | 2012
Yueming Qian; Xuankuo Xu; Nan-Xin Qian; Vineeta Dhar; Li You; Zizhuo Xing; Chao Huang; Shih-Hsie Pan; Zheng Jian Li
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Process Biochemistry | 2011
Zizhuo Xing; Brian Kenty; Inna Koyrakh; Michael C. Borys; Shih-Hsie Pan; Zheng Jian Li
Biotechnology Journal | 2016
Yuanwei Gao; Somak Ray; Shujia Dai; Alexander R. Ivanov; Nicholas R. Abu-Absi; Amanda M. Lewis; Zhuangrong Huang; Zizhuo Xing; Michael C. Borys; Zheng Jian Li; Barry L. Karger
Archive | 2006
Nigel Ian Bowers; Paul M. Skonezny; Gregory L. Stein; Thomas Franceschini; Shu-Jen Chiang; Wendy L. Anderson; Li You; Zizhuo Xing
Journal of Industrial Microbiology & Biotechnology | 2012
Jianlin Xu; Yueming Qian; Paul M. Skonezny; Li You; Zizhuo Xing; David S. Meyers; Robert J. Stankavage; Shih-Hsie Pan; Zheng Jian Li