Zlatko Kopecki
University of South Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zlatko Kopecki.
Journal of Investigative Dermatology | 2009
Zlatko Kopecki; Ruth M. Arkell; Barry C. Powell
Flightless I (Flii), a highly conserved member of the gelsolin family of actin-remodelling proteins associates with actin structures and is involved in cellular motility and adhesion. Our previous studies have shown that Flii is an important negative regulator of wound repair. Here, we show that Flii affects hemidesmosome formation and integrin-mediated keratinocyte adhesion and migration. Impaired hemidesmosome formation and sparse arrangements of keratin cytoskeleton tonofilaments and actin cytoskeleton anchoring fibrils were observed in Flii(Tg/+) and Flii(Tg/Tg) mice with their skin being significantly more fragile than Flii(+/-) and WT mice. Flii(+/-) primary keratinocytes showed increased adhesion on laminin and collagen I than WT and Flii(Tg/Tg) primary keratinocytes. Decreased expression of CD151 and laminin-binding integrins alpha3, beta1, alpha6 and beta4 were observed in Flii overexpressing wounds, which could contribute to the impaired wound re-epithelialization observed in these mice. Flii interacts with proteins directly linked to the cytoplasmic domain of integrin receptors suggesting that it may be a mechanical link between ligand-bound integrin receptors and the actin cytoskeleton driving adhesion-signaling pathways. Therefore Flii may regulate wound repair through its effect on hemidesmosome formation and integrin-mediated cellular adhesion and migration.
The Journal of Pathology | 2007
Zlatko Kopecki; Mm Luchetti; Damian H. Adams; Xanthe L. Strudwick; Theo Mantamadiotis; A Stoppacciaro; A Gabrielli; Robert G. Ramsay
Collagen type I serves as an abundant structural and signalling component of skin. It is also an established target gene of the transcription factor, c‐Myb. When c‐myb−/− embryos were examined it was observed that their skin was markedly thinner than normal. Importantly, immunohistochemical investigation showed complete absence of collagen type I. Although these homozygous knock‐out embryos fail to develop beyond day 15, fibroblasts established from these embryos (mouse embryonic fibroblasts [MEFs]) show defective proliferative responses. Furthermore, in vitro scratch wound assays demonstrated that these c‐myb−/− MEFs also exhibit slower closure than their wild‐type counterparts. Embryonic lethality has meant that examination of the role of c‐Myb in adult mouse skin has not been reported to date. However, in view of the abundance of collagen type I in normal skin, its role in skin integrity and the in vitro data showing proliferative and migration defects in c‐myb−/− MEFs, we investigated the consequences of heterozygous c‐myb loss in adult mice on the complex process of skin repair in response to injury. Our studies clearly demonstrate that heterozygous c‐myb deficiency has a functional effect on wound repair, collagen type I levels and, in response to wounding, transforming growth factor‐β1 (an important collagen stimulating factor) induction expression is aberrantly high. Manipulation of c‐Myb may therefore provide new therapeutic opportunities for improving wound repair while uncontrolled expression may underpin some fibrotic disorders. Copyright
The Journal of Pathology | 2011
Zlatko Kopecki; Ruth M. Arkell; Xanthe L. Strudwick; Misa Hirose; Ralf J. Ludwig; Johannes S. Kern; Leena Bruckner-Tuderman; Detlef Zillikens; Dédée F. Murrell
Epidermolysis bullosa (EB) is a severe genetic skin fragility syndrome characterized by blister formation. The molecular basis of EB is still largely unknown and wound healing in patients suffering from EB remains a major challenge to their survival. Our previous studies have identified the actin remodelling protein Flightless I (Flii) as an important mediator of wound repair. Here we identify Flii as a novel target involved in skin blistering. Flii expression was significantly elevated in 30 patients with EB, most prominently in patients with recessive dystrophic EB (RDEB) who have defects in production of type VII collagen (ColVII). Using an autoimmune ColVII murine model of EB acquisita (EBA) and an immunocompetent‐ColVII‐hypomorphic genetic mouse model of RDEB together with murine Flii alleles, we investigated the contribution of Flii to EB. Overexpression of Flii produced severe blistering post‐induction of EBA, while decreased Flii reduced blister severity, elevated integrin expression, and improved ColVII production. Flii+/− blistered skin showed reduced α‐SMA, TGF‐β1, and Smad 2/3 expression, suggesting that decreasing Flii may affect fibrosis. In support of this, Flii‐deficient fibroblasts from EBA mice were less able to contract collagen gels in vitro; however, addition of TGF‐β1 restored collagen contraction, suggesting an interplay between Flii and TGF‐β1. Elevated Flii gene and protein expression was further observed in the blisters of ColVII hypomorphic mice, a murine model of RDEB, suggesting that reducing Flii in blistered skin could be a potential new approach for treating patients with EB. Copyright
The International Journal of Biochemistry & Cell Biology | 2008
Damian H. Adams; Xanthe L. Strudwick; Zlatko Kopecki; Jane A. Hooper-Jones; Klaus I. Matthaei; Hugh D. Campbell; Barry C. Powell
Impaired wound healing in the elderly presents a major clinical challenge. Understanding the cellular mechanisms behind age-related impaired healing is vital for developing new wound therapies. Here we show that the actin-remodelling protein, Flightless I (FliI) is a contributing factor to the poor healing observed in elderly skin and that gender plays a major role in this process. Using young and aged, wild-type and FliI overexpressing mice we found that aging significantly elevated FliI expression in the epidermis and wound matrix. Aging exacerbated the negative effect of FliI on wound repair and wounds in aged FliI transgenic mice were larger with delayed reepithelialisation. When the effect of gender was further analysed, despite increased FliI expression in young and aged male and female mice, female FliI transgenic mice had the most severe wound healing phenotype suggesting that male mice were refractory to FliI gene expression. Of potential importance, males, but not females, up-regulated transforming growth factor-beta1 and this was most pronounced in aged male FliI overexpressing wounds. As FliI also functions as a co-activator of the estrogen nuclear receptor, increasing concentrations of beta-estradiol were added to skin fibroblasts and keratinocytes and significantly enhanced FliI expression and translocation of FliI from the cytoplasm to the nucleus was observed. FliI further inhibited estrogen-mediated collagen I secretion suggesting a mechanism via which FliI may directly affect provisional matrix synthesis. In summary, FliI is a contributing factor to impaired healing and strategies aimed at decreasing FliI levels in elderly skin may improve wound repair.
Journal of Investigative Dermatology | 2011
Zlatko Kopecki; Geraldine M. O'Neill; Ruth M. Arkell
Flightless I (Flii) is an actin-remodeling protein that influences diverse processes including cell migration and gene transcription and links signal transduction with cytoskeletal regulation. Here, we show that Flii modulation of focal adhesions and filamentous actin stress fibers is Rac1-dependent. Using primary skin fibroblasts from Flii overexpressing (Flii(Tg/Tg)), wild-type, and Flii deficient (Flii(+/-)) mice, we show that elevated expression of Flii increases stress fiber formation by impaired focal adhesion turnover and enhanced formation of fibrillar adhesions. Conversely, Flii knockdown increases the percentage of focal complex positive cells. We further show that a functional effect of Flii at both the cellular level and in in vivo mouse wounds is through inhibiting paxillin tyrosine phosphorylation and suppression of signaling proteins Src and p130Cas, both of which regulate adhesion signaling pathways. Flii is upregulated in response to wounding, and overexpression of Flii inhibits paxillin activity and reduces adhesion signaling by modulating the activity of the Rho family GTPases. Overexpression of constitutively active Rac1 GTPase restores the spreading ability of Flii(Tg/Tg) fibroblasts and may explain the reduced adhesion, migration, and proliferation observed in Flii(Tg/Tg) mice and their impaired wound healing, a process dependent on effective cellular motility and adhesion.
Wound Repair and Regeneration | 2012
Jessica E. Jackson; Zlatko Kopecki; Damian H. Adams
Wound healing is an important area of widely unmet medical need, with millions of procedures carried out worldwide which could potentially benefit from a product to improve the wound repair process. Our studies investigating the actin‐remodeling protein Flightless I (Flii) show it to be an important regulator of wound healing. Flii‐deficient mice have enhanced wound healing in comparison to Flii overexpressing mice which have impaired wound healing. For the first time, we show that a Flightless I neutralizing monoclonal antibody (FnAb) therapy is effective in a large animal model of wound repair. Porcine 5 cm incisional and 6.25 cm2 excisional wounds were treated with FnAb at the time of wounding and for two subsequent days. The wounds were dressed in Tegaderm dressings and left to heal by secondary intention for 7 and 35 days, respectively. At the relevant end points, the wounds were excised and processed for histological analysis. Parameters of wound area, collagen deposition, and scar appearance were analyzed. The results show that treatment with FnAb accelerates reepithelialization and improves the macroscopic appearance of early scars. FnAbs have the potential to enhance wound repair and reduce scar formation.
BioMed Research International | 2013
Heng T. Chong; Zlatko Kopecki
Psoriasis is a common chronic inflammatory skin condition in which patients suffer from mild to chronic plaque skin plaques. The disease manifests through an excessive inflammatory response in the skin due to complex interactions between different genetic and environmental factors. Psoriasis can affect the physical, emotional, and psychosocial well-being of patients, and currently there is no cure with treatments focusing primarily on the use of anti-inflammatory agents to control disease symptoms. Traditional anti-inflammatory agents can cause immunosuppression and adverse systemic effects. Further understanding of the disease has led to current areas of research aiming at the development of selective molecular targets to suppress the pathogenic immune responses.
Diabetologia | 2014
Nadira Ruzehaji; Zlatko Kopecki; Elizabeth Melville; Sarah L. Appleby; Claudine S. Bonder; Ruth M. Arkell; Robert Fitridge
Aims/hypothesisSkin lesions and ulcerations are severe complications of diabetes that often result in leg amputations. In this study we investigated the function of the cytoskeletal protein flightless I (FLII) in diabetic wound healing. We hypothesised that overexpression of FLII would have a negative effect on diabetic wound closure and modulation of this protein using specific FLII-neutralising antibodies (FnAb) would enhance cellular proliferation, migration and angiogenesis within the diabetic wound.MethodsUsing a streptozotocin-induced model of diabetes we investigated the effect of altered FLII levels through Flii genetic knockdown, overexpression or treatment with FnAb on wound healing. Diabetic wounds were assessed using histology, immunohistochemistry and biochemical analysis. In vitro and in vivo assays of angiogenesis were used to assess the angiogenic response.ResultsFLII levels were elevated in the wounds of both diabetic mice and humans. Reduction in the level of FLII improved healing of murine diabetic wounds and promoted a robust pro-angiogenic response with significantly elevated von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-positive endothelial cell infiltration. Diabetic mouse wounds treated intradermally with FnAb showed improved healing and a significantly increased rate of re-epithelialisation. FnAb improved the angiogenic response through enhanced formation of capillary tubes and functional neovasculature. Reducing the level of FLII led to increased numbers of mature blood vessels, increased recruitment of smooth muscle actin-α-positive cells and improved tight junction formation.Conclusions/interpretationReducing the level of FLII in a wound may be a potential therapeutic approach for the treatment of diabetic foot ulcers.
Journal of Molecular Histology | 2016
Mohamed Arshad Mohamed Sideek; Abdulrahman Teia; Zlatko Kopecki; Mark A. Gibson
We have recently shown that Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) has a single high-affinity binding site for fibroblast growth factor-2 (FGF-2) and that LTBP-2 blocks FGF-2 induced cell proliferation. Both proteins showed strong co-localisation within keloid skin from a single patient. In the current study, using confocal microscopy, we have investigated the distribution of the two proteins in normal and fibrotic skin samples including normal scar tissue, hypertrophic scars and keloids from multiple patients. Consistently, little staining for either protein was detected in normal adult skin and normal scar samples but extensive co-localisation of the two proteins was observed in multiple examples of hypertrophic scars and keloids. LTBP-2 and FGF-2 were co-localised to fine fibrous elements within the extracellular matrix identified as elastic fibres by immunostaining with anti-fibrillin-1 and anti-elastin antibodies. Furthermore, qPCR analysis of RNA samples from multiple patients confirmed dramatically increased expression of LTBP-2 and FGF-2, similar TGF-beta 1, in hypertrophic scar compared to normal skin and scar tissue. Overall the results suggest that elevated LTBP-2 may bind and sequester FGF-2 on elastic fibres in fibrotic tissues and modulate FGF-2’s influence on the repair and healing processes.
PLOS ONE | 2015
Clementine Menz; Mahroo K. Parsi; Julian R. J. Adams; Mohamed Arshad Mohamed Sideek; Zlatko Kopecki; Mark A. Gibson
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) belongs to the fibrillin-LTBP superfamily of extracellular matrix proteins. LTBPs and fibrillins are involved in the sequestration and storage of latent growth factors, particularly transforming growth factor β (TGF-β), in tissues. Unlike other LTBPs, LTBP-2 does not covalently bind TGF-β, and its molecular functions remain unclear. We are screening LTBP-2 for binding to other growth factors and have found very strong saturable binding to fibroblast growth factor-2 (FGF-2) (Kd = 1.1 nM). Using a series of recombinant LTBP-2 fragments a single binding site for FGF-2 was identified in a central region of LTBP-2 consisting of six tandem epidermal growth factor-like (EGF-like) motifs (EGFs 9–14). This region was also shown to contain a heparin/heparan sulphate-binding site. FGF-2 stimulation of fibroblast proliferation was completely negated by the addition of 5-fold molar excess of LTBP-2 to the assay. Confocal microscopy showed strong co-localisation of LTBP-2 and FGF-2 in fibrotic keloid tissue suggesting that the two proteins may interact in vivo. Overall the study indicates that LTBP-2 is a potent inhibitor of FGF-2 that may influence FGF-2 bioactivity during wound repair particularly in fibrotic tissues.