Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoe Hall is active.

Publication


Featured researches published by Zoe Hall.


Analytical Chemistry | 2010

Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology

Matthew F. Bush; Zoe Hall; Kevin Giles; John Brian Hoyes; Carol V. Robinson; Brandon T. Ruotolo

Collision cross sections in both helium and nitrogen gases were measured directly using a drift cell with RF ion confinement inserted within a quadrupole/ion mobility/time-of-flight hybrid mass spectrometer (Waters Synapt HDMS, Manchester, U.K.). Collision cross sections for a large set of denatured peptide, denatured protein, native-like protein, and native-like protein complex ions are reported here, forming a database of collision cross sections that spans over 2 orders of magnitude. The average effective density of the native-like ions is 0.6 g cm(-3), which is significantly lower than that for the solvent-excluded regions of proteins and suggests that these ions can retain significant memory of their solution-phase structures rather than collapse to globular structures. Because the measurements are acquired using an instrument that mimics the geometry of the commercial Synapt HDMS instrument, this database enables the determination of highly accurate collision cross sections from traveling-wave ion mobility data through the use of calibration standards with similar masses and mobilities. Errors in traveling-wave collision cross sections determined for native-like protein complexes calibrated using other native-like protein complexes are significantly less than those calibrated using denatured proteins. This database indicates that collision cross sections in both helium and nitrogen gases can be well-correlated for larger biomolecular ions, but non-correlated differences for smaller ions can be more significant. These results enable the generation of more accurate three-dimensional models of protein and other biomolecular complexes using gas-phase structural biology techniques.


Journal of the American Chemical Society | 2012

Charge-state dependent compaction and dissociation of protein complexes: Insights from ion mobility and molecular dynamics.

Zoe Hall; Argyris Politis; Matthew F. Bush; Lorna J. Smith; Carol V. Robinson

Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further studies as well as for understanding the process of CID and for applications to gas-phase structural biology more generally.


Journal of the American Society for Mass Spectrometry | 2012

Do Charge State Signatures Guarantee Protein Conformations

Zoe Hall; Carol V. Robinson

The extent to which proteins in the gas phase retain their condensed-phase structure is a hotly debated issue. Closely related to this is the degree to which the observed charge state reflects protein conformation. Evidence from electron capture dissociation, hydrogen/deuterium exchange, ion mobility, and molecular dynamics shows clearly that there is often a strong correlation between the degree of folding and charge state, with the most compact conformations observed for the lowest charge states. In this article, we address recent controversies surrounding the relationship between charge states and folding, focussing also on the manipulation of charge in solution and its effect on conformation. ‘Supercharging’ reagents that have been used to effect change in charge state can promote unfolding in the electrospray droplet. However for several protein complexes, supercharging does not appear to perturb the structure in that unfolding is not detected. Consequently, a higher charge state does not necessarily imply unfolding. Whilst the effect of charge manipulation on conformation remains controversial, there is strong evidence that a folded, compact state of a protein can survive in the gas phase, at least on a millisecond timescale. The exact nature of the side-chain packing and secondary structural elements in these compact states, however, remains elusive and prompts further research.


Cell | 2013

Protein Complexes Are under Evolutionary Selection to Assemble via Ordered Pathways

Joseph A. Marsh; Helena Hernández; Zoe Hall; Sebastian E. Ahnert; Tina Perica; Carol V. Robinson; Sarah A. Teichmann

Summary Is the order in which proteins assemble into complexes important for biological function? Here, we seek to address this by searching for evidence of evolutionary selection for ordered protein complex assembly. First, we experimentally characterize the assembly pathways of several heteromeric complexes and show that they can be simply predicted from their three-dimensional structures. Then, by mapping gene fusion events identified from fully sequenced genomes onto protein complex assembly pathways, we demonstrate evolutionary selection for conservation of assembly order. Furthermore, using structural and high-throughput interaction data, we show that fusion tends to optimize assembly by simplifying protein complex topologies. Finally, we observe protein structural constraints on the gene order of fusion that impact the potential for fusion to affect assembly. Together, these results reveal the intimate relationships among protein assembly, quaternary structure, and evolution and demonstrate on a genome-wide scale the biological importance of ordered assembly pathways.


Nature Methods | 2014

A mass spectrometry-based hybrid method for structural modeling of protein complexes

Anargyros Politis; Florian Stengel; Zoe Hall; Helena Hernández; Alexander Leitner; Thomas Walzthoeni; Carol V. Robinson; Ruedi Aebersold

We describe a method that integrates data derived from different mass spectrometry (MS)-based techniques with a modeling strategy for structural characterization of protein assemblies. We encoded structural data derived from native MS, bottom-up proteomics, ion mobility–MS and chemical cross-linking MS into modeling restraints to compute the most likely structure of a protein assembly. We used the method to generate near-native models for three known structures and characterized an assembly intermediate of the proteasomal base.


Structure | 2012

Structural Modeling of Heteromeric Protein Complexes from Disassembly Pathways and Ion Mobility-Mass Spectrometry

Zoe Hall; Argyris Politis; Carol V. Robinson

Structure determination of macromolecular protein assemblies remains a challenge for well-established methods. Here, we provide an assessment of an emerging structural technique, ion mobility-mass spectrometry (IM-MS), and examine the use of collision cross-sections (CCSs), derived from IM-MS, as restraints for structure characterization of heteromeric protein assemblies. Using 15 complexes selected from the Protein Data Bank, we validate the use of low-resolution models by comparing their CCSs with those calculated for all-atom structures. We then select six heteromeric complexes, disrupting them in solution to form subcomplexes. Experimental and calculated CCSs reveal close similarity for 18 of the 21 (sub)complexes. Exploring the use of CCS as a restraint, we incorporate it into a scoring function and show good correlation between the score and similarity to the native structure for heteromers, especially when an additional symmetry restraint was introduced.


Angewandte Chemie | 2013

Intrinsically Disordered p53 and Its Complexes Populate Compact Conformations in the Gas Phase

Kevin Pagel; Eviatar Natan; Zoe Hall; Alan R. Fersht; Carol V. Robinson

Spontaneous shrinking: the intrinsically disordered tumor suppressor protein p53 was analyzed by using a combination of ion mobility mass spectrometry and molecular dynamics simulations. Structured p53 subdomains retain their overall topology upon transfer into the gas phase. When intrinsically disordered segments are introduced into the protein sequence, however, the complex spontaneously collapses in the gas phase to a compact conformation.


Structure | 2013

The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes.

Zoe Hall; Helena Hernández; Joseph A. Marsh; Sarah A. Teichmann; Carol V. Robinson

Summary Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution.


Hepatology | 2017

Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease

Zoe Hall; Nicholas J Bond; Tom Ashmore; Francis Sanders; Zsuzsanna Ament; Xinzhu Wang; Andrew J. Murray; Elena Bellafante; Sam Virtue; Antonio Vidal-Puig; Michael Allison; Susan E. Davies; Albert Koulman; Michele Vacca; Julian L. Griffin

Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA‐containing lipids. This results in a cycle of AA‐enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. Conclusion: NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165‐1180)


Cancer Research | 2016

Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer

Zoe Hall; Zsuzsanna Ament; Catherine H. Wilson; Deborah L. Burkhart; Tom Ashmore; Albert Koulman; Trevor D. Littlewood; Gerard I. Evan; Julian L. Griffin

MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.

Collaboration


Dive into the Zoe Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Koulman

MRC Human Nutrition Research

View shared research outputs
Top Co-Authors

Avatar

Sarah A. Teichmann

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge