Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Argyris Politis is active.

Publication


Featured researches published by Argyris Politis.


Science | 2011

Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding

Min Zhou; Nina Morgner; Nelson P. Barrera; Argyris Politis; Shoshanna C Isaacson; Dijana Matak-Vinkovic; Takeshi Murata; Ricardo A. Bernal; Daniela Stock; Carol V. Robinson

The effect of lipids and nucleotides on the soluble head domain and membrane base domain is examined in an intact adenosine triphosphatase. The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.


Journal of the American Chemical Society | 2012

Charge-state dependent compaction and dissociation of protein complexes: Insights from ion mobility and molecular dynamics.

Zoe Hall; Argyris Politis; Matthew F. Bush; Lorna J. Smith; Carol V. Robinson

Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further studies as well as for understanding the process of CID and for applications to gas-phase structural biology more generally.


Molecular Cell | 2013

Structure of the CRISPR Interference complex CSM reveals key similarities with Cascade

Christophe Rouillon; Min Zhou; Jing Zhang; Argyris Politis; Victoria Beilsten-Edmands; Giuseppe Cannone; Shirley Graham; Carol V. Robinson; Laura Spagnolo; Malcolm F. White

Summary The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I–III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family.


PLOS ONE | 2010

Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes

Argyris Politis; Ah Young Park; Suk Joon Hyung; Daniel Barsky; Brandon T. Ruotolo; Carol V. Robinson

Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4).


Nature Communications | 2013

Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation.

Carla Schmidt; Min Zhou; Hazel Marriott; Nina Morgner; Argyris Politis; Carol V. Robinson

F-type ATPases are highly conserved enzymes used primarily for the synthesis of ATP. Here we apply mass spectrometry to the F1FO-ATPase, isolated from spinach chloroplasts, and uncover multiple modifications in soluble and membrane subunits. Mass spectra of the intact ATPase define a stable lipid ‘plug’ in the FO complex and reveal the stoichiometry of nucleotide binding in the F1 head. Comparing complexes formed in solution from an untreated ATPase with one incubated with a phosphatase reveals that the dephosphorylated enzyme has reduced nucleotide occupancy and decreased stability. By contrasting chemical cross-linking of untreated and dephosphorylated forms we show that cross-links are retained between the head and base, but are significantly reduced in the head, stators and stalk. Conformational changes at the catalytic interface, evidenced by changes in cross-linking, provide a rationale for reduced nucleotide occupancy and highlight a role for phosphorylation in regulating nucleotide binding and stability of the chloroplast ATPase.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump

Julien Marcoux; Sheila C. Wang; Argyris Politis; Eamonn Reading; Jerome Ma; Philip C. Biggin; Min Zhou; Houchao Tao; Qinghai Zhang; Geoffrey Chang; Nina Morgner; Carol V. Robinson

Multidrug resistance is a serious barrier to successful treatment of many human diseases, including cancer, wherein chemotherapeutics are exported from target cells by membrane-embedded pumps. The most prevalent of these pumps, the ATP-Binding Cassette transporter P-glycoprotein (P-gp), consists of two homologous halves each comprising one nucleotide-binding domain and six transmembrane helices. The transmembrane region encapsulates a hydrophobic cavity, accessed by portals in the membrane, that binds cytotoxic compounds as well as lipids and peptides. Here we use mass spectrometry (MS) to probe the intact P-gp small molecule-bound complex in a detergent micelle. Activation in the gas phase leads to formation of ions, largely devoid of detergent, yet retaining drug molecules as well as charged or zwitterionic lipids. Measuring the rates of lipid binding and calculating apparent KD values shows that up to six negatively charged diacylglycerides bind more favorably than zwitterionic lipids. Similar experiments confirm binding of cardiolipins and show that prior binding of the immunosuppressant and antifungal antibiotic cyclosporin A enhances subsequent binding of cardiolipin. Ion mobility MS reveals that P-gp exists in an equilibrium between different states, readily interconverted by ligand binding. Overall these MS results show how concerted small molecule binding leads to synergistic effects on binding affinities and conformations of a multidrug efflux pump.


Structure | 2012

Structural Modeling of Heteromeric Protein Complexes from Disassembly Pathways and Ion Mobility-Mass Spectrometry

Zoe Hall; Argyris Politis; Carol V. Robinson

Structure determination of macromolecular protein assemblies remains a challenge for well-established methods. Here, we provide an assessment of an emerging structural technique, ion mobility-mass spectrometry (IM-MS), and examine the use of collision cross-sections (CCSs), derived from IM-MS, as restraints for structure characterization of heteromeric protein assemblies. Using 15 complexes selected from the Protein Data Bank, we validate the use of low-resolution models by comparing their CCSs with those calculated for all-atom structures. We then select six heteromeric complexes, disrupting them in solution to form subcomplexes. Experimental and calculated CCSs reveal close similarity for 18 of the 21 (sub)complexes. Exploring the use of CCS as a restraint, we incorporate it into a scoring function and show good correlation between the score and similarity to the native structure for heteromers, especially when an additional symmetry restraint was introduced.


Nature Chemistry | 2014

Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility

Min Zhou; Argyris Politis; Roberta B. Davies; Idlir Liko; Kuan Jung Wu; Alastair G. Stewart; Daniela Stock; Carol V. Robinson

Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.


Journal of the American Chemical Society | 2010

Ion Mobility Mass Spectrometry of Two Tetrameric Membrane Protein Complexes Reveals Compact Structures and Differences in Stability and Packing

Sheila C. Wang; Argyris Politis; Natalie D. Di Bartolo; Vassiliy N. Bavro; Stephen J. Tucker; Paula J. Booth; Nelson P. Barrera; Carol V. Robinson

Here we examined the gas-phase structures of two tetrameric membrane protein complexes by ion mobility mass spectrometry. The collision cross sections measured for the ion channel are in accord with a compact configuration of subunits, suggesting that the native-like structure can be preserved under the harsh activation conditions required to release it from the detergent micelle into the gas phase. We also found that the quaternary structure of the transporter, which has fewer transmembrane subunits than the ion channel, is less stable once stripped of detergents and bulk water. These results highlight the potential of ion mobility mass spectrometry for characterizing the overall topologies of membrane protein complexes and the structural changes associated with nucleotide, lipid, and drug binding.


Journal of Biological Chemistry | 2016

Uncovering the Early Assembly Mechanism for Amyloidogenic β2-Microglobulin Using Cross-linking and Native Mass Spectrometry

Zoe Hall; Carla Schmidt; Argyris Politis

β2-Microglobulin (β2m), a key component of the major histocompatibility class I complex, can aggregate into fibrils with severe clinical consequences. As such, investigating the structural aspects of the formation of oligomeric intermediates of β2m and their subsequent progression toward fibrillar aggregates is of great importance. However, β2m aggregates are challenging targets in structural biology, primarily due to their inherent transient and heterogeneous nature. Here we study the oligomeric distributions and structures of the early intermediates of amyloidogenic β2m and its truncated variant ΔN6-β2m. We established compact oligomers for both variants by integrating advanced mass spectrometric techniques with available electron microscopy maps and atomic level structures from NMR spectroscopy and x-ray crystallography. Our results revealed a stepwise assembly mechanism by monomer addition and domain swapping for the oligomeric species of ΔN6-β2m. The observed structural similarity and common oligomerization pathway between the two variants is likely to enable ΔN6-β2m to cross-seed β2m fibrillation and allow the formation of mixed fibrils. We further determined the key subunit interactions in ΔN6-β2m tetramer, revealing the importance of a domain-swapped hinge region for formation of higher order oligomers. Overall, we deliver new mechanistic insights into β2m aggregation, paving the way for future studies on the mechanisms and cause of amyloid fibrillation.

Collaboration


Dive into the Argyris Politis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoe Hall

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Min Zhou

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Euan Pyle

King's College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge