Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoe Hunter is active.

Publication


Featured researches published by Zoe Hunter.


Nature Biotechnology | 2012

Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis

Daniel R. Getts; Aaron Martin; Derrick P. McCarthy; Rachael L. Terry; Zoe Hunter; Woon Teck Yap; Meghann Teague Getts; Michael Pleiss; Xunrong Luo; Nicholas J. C. King; Lonnie D. Shea; Stephen D. Miller

Aberrant T-cell activation underlies many autoimmune disorders, yet most attempts to induce T-cell tolerance have failed. Building on previous strategies for tolerance induction that exploited natural mechanisms for clearing apoptotic debris, we show that antigen-decorated microparticles (500-nm diameter) induce long-term T-cell tolerance in mice with relapsing experimental autoimmune encephalomyelitis. Specifically, intravenous infusion of either polystyrene or biodegradable poly(lactide-co-glycolide) microparticles bearing encephalitogenic peptides prevents the onset and modifies the course of the disease. These beneficial effects require microparticle uptake by marginal zone macrophages expressing the scavenger receptor MARCO and are mediated in part by the activity of regulatory T cells, abortive T-cell activation and T-cell anergy. Together these data highlight the potential for using microparticles to target natural apoptotic clearance pathways to inactivate pathogenic T cells and halt the disease process in autoimmunity.


ACS Nano | 2014

A Biodegradable Nanoparticle Platform for the Induction of Antigen-Specific Immune Tolerance for Treatment of Autoimmune Disease

Zoe Hunter; Derrick P. McCarthy; Woon Teck Yap; Christopher T. Harp; Daniel R. Getts; Lonnie D. Shea; Stephen D. Miller

Targeted immune tolerance is a coveted therapy for the treatment of a variety of autoimmune diseases, as current treatment options often involve nonspecific immunosuppression. Intravenous (iv) infusion of apoptotic syngeneic splenocytes linked with peptide or protein autoantigens using ethylene carbodiimide (ECDI) has been demonstrated to be an effective method for inducing peripheral, antigen-specific tolerance for treatment of autoimmune disease. Here, we show the ability of biodegradable poly(lactic-co-glycolic acid) (PLG) nanoparticles to function as a safe, cost-effective, and highly efficient alternative to cellular carriers for the induction of antigen-specific T cell tolerance. We describe the formulation of tolerogenic PLG particles and demonstrate that administration of myelin antigen-coupled particles both prevented and treated relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE), a CD4 T cell-mediated mouse model of multiple sclerosis (MS). PLG particles made on-site with surfactant modifications surpass the efficacy of commercially available particles in their ability to couple peptide and to prevent disease induction. Most importantly, myelin antigen-coupled PLG nanoparticles are able to significantly ameliorate ongoing disease and subsequent relapses when administered at onset or at peak of acute disease, and minimize epitope spreading when administered during disease remission. Therapeutic treatment results in significantly reduced CNS infiltration of encephalitogenic Th1 (IFN-γ) and Th17 (IL-17a) cells as well as inflammatory monocytes/macrophages. Together, these data describe a platform for antigen display that is safe, low-cost, and highly effective at inducing antigen-specific T cell tolerance. The development of such a platform carries broad implications for the treatment of a variety of immune-mediated diseases.


Vaccine | 2009

Induction of mucosal and systemic antibody responses against the HIV coreceptor CCR5 upon intramuscular immunization and aerosol delivery of a virus-like particle based vaccine.

Zoe Hunter; Hugh D. C. Smyth; Paul N. Durfee; Bryce Chackerian

Virus-like particles (VLPs) can be exploited as platforms to increase the immunogenicity of poorly immunogenic antigens, including self-proteins. We have developed VLP-based vaccines that target two domains of the HIV coreceptor CCR5 that are involved in HIV binding. These vaccines induce anti-CCR5 antibodies that bind to native CCR5 and inhibit SIV infection in vitro. Given the role of mucosal surfaces in HIV transmission and replication, we also asked whether an aerosolized, VLP-based pulmonary vaccine targeting CCR5 could induce a robust mucosal response in addition to a systemic response. In rats, both intramuscular and pulmonary immunization induced high-titer IgG and IgA against the vaccine in the serum, but only aerosol vaccination induced IgA antibodies at local mucosal sites. An intramuscular prime followed by an aerosol boost resulted in strong serum and mucosal antibody responses. These results show that VLP-based vaccines targeting CCR5 induce high-titer systemic antibodies, and can elicit both local and systemic mucosal response when administered via an aerosol. Vaccination against a self-molecule that is critically involved during HIV transmission and pathogenesis is an alternative to targeting the virus itself. More generally, our results provide a general method for inducing broad systemic and mucosal antibody responses using VLP-based immunogens.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization

Charles B. Smarr; Woon Teck Yap; Tobias Neef; Ryan M. Pearson; Zoe Hunter; Igal Ifergan; Daniel R. Getts; Paul J. Bryce; Lonnie D. Shea; Stephen D. Miller

Significance Allergic diseases are characterized by inappropriate inflammatory responses to benign environmental antigens (Ags). Primary clinical approaches to allergic disease consist of symptom control or administration of soluble Ag to skew the immune response to alternate phenotypes or induce immune tolerance. However, such approaches carry a significant risk of adverse events and require a long treatment course to achieve efficacy. In this paper, we describe the use of i.v.-administered nanoparticles as carriers of whole-protein Ag to induce tolerance safely and effectively in the absence of nonspecific immunosuppression for the prevention and treatment of a mouse model of allergic asthma. Specific immunotherapy (SIT) is the most widely used treatment for allergic diseases that directly targets the T helper 2 (Th2) bias underlying allergy. However, the most widespread clinical applications of SIT require a long period of dose escalation with soluble antigen (Ag) and carry a significant risk of adverse reactions, particularly in highly sensitized patients who stand to benefit most from a curative treatment. Thus, the development of safer, more efficient methods to induce Ag-specific immune tolerance is critical to advancing allergy treatment. We hypothesized that antigen-associated nanoparticles (Ag-NPs), which we have used to prevent and treat Th1/Th17-mediated autoimmune disease, would also be effective for the induction of tolerance in a murine model of Th2-mediated ovalbumin/alum-induced allergic airway inflammation. We demonstrate here that antigen-conjugated polystyrene (Ag-PS) NPs, although effective for the prophylactic induction of tolerance, induce anaphylaxis in presensitized mice. Antigen-conjugated NPs made of biodegradable poly(lactide-co-glycolide) (Ag-PLG) are similarly effective prophylactically, are well tolerated by sensitized animals, but only partially inhibit Th2 responses when administered therapeutically. PLG NPs containing encapsulated antigen [PLG(Ag)], however, were well tolerated and effectively inhibited Th2 responses and airway inflammation both prophylactically and therapeutically. Thus, we illustrate progression toward PLG(Ag) as a biodegradable Ag carrier platform for the safe and effective inhibition of allergic airway inflammation without the need for nonspecific immunosuppression in animals with established Th2 sensitization.


Journal of Virology | 2014

A Vaccine against CCR5 Protects a Subset of Macaques upon Intravaginal Challenge with Simian Immunodeficiency Virus SIVmac251

Koen K. A. Van Rompay; Zoe Hunter; Kartika Jayashankar; Julianne Peabody; David C. Montefiori; Celia C. LaBranche; Brandon F. Keele; Kara Jensen; Kristina Abel; Bryce Chackerian

ABSTRACT As an alternative to targeting human immunodeficiency virus (HIV), we have developed vaccines targeting CCR5, a self-protein critically involved in HIV replication and pathogenesis. By displaying peptides derived from CCR5 at high density on the surface of virus-like particles, we can efficiently induce high-titer IgG antibodies against this self-molecule. Here, we investigated whether prophylactic immunization of rhesus macaques with a particle-based vaccine targeting two regions of macaque CCR5 could prevent or suppress vaginal infection with highly virulent SIVmac251. Twelve macaques were vaccinated with a bacteriophage Qß-based vaccine targeting macaque CCR5 (Qß.CCR5). Six control animals were immunized with the Qß platform alone. All animals immunized with Qß.CCR5 developed high-titer anti-CCR5 antibody responses. Macaques were vaginally challenged with a high dose of SIVmac251. The mean peak viral RNA levels in the vaccinated groups were 30-fold lower than in the control group (106.8 versus 108.3 copies/ml plasma). Three of the 12 vaccinated macaques dramatically suppressed simian immunodeficiency virus (SIV) replication: peak viral loads were low (103 to 104 RNA copies/ml), and SIV RNA became undetectable from 6 weeks onward. No viral RNA or DNA could be detected in colon and lymph node biopsy specimens collected 13 months after challenge. In vivo depletion of CD8+ cells failed to induce a viral rebound. However, once anti-CCR5 antibody responses had waned, the 3 animals became infected after intravaginal and/or intravenous rechallenge. In conclusion, vaccination against CCR5 was associated with dramatic suppression of virus replication in a subset (25%) of macaques. These data support further research of vaccination against CCR5 to combat HIV infection.


Journal of Autoimmunity | 2017

Targeting the GM-CSF receptor for the treatment of CNS autoimmunity

Igal Ifergan; Todd S. Davidson; Hania Kebir; Dan Xu; Daphne Palacios-Macapagal; Jennifer Cann; Jane M. Rodgers; Zoe Hunter; Camille L. Pittet; Sara Beddow; Clare Jones; Alexandre Prat; Matthew A. Sleeman; Stephen D. Miller

In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS.


Journal of Neuroinflammation | 2013

Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo

Valerie L Eaton; Kristine O. Vasquez; Gwendolyn E. Goings; Zoe Hunter; Jeffrey D. Peterson; Stephen D. Miller

BackgroundExperimental autoimmune encephalomyelitis (EAE) is an animal model that captures many of the hallmarks of human multiple sclerosis (MS), including blood–brain barrier (BBB) breakdown, inflammation, demyelination and axonal destruction. The standard clinical score measurement of disease severity and progression assesses functional changes in animal mobility; however, it does not offer information regarding the underlying pathophysiology of the disease in real time. The purpose of this study was to apply a novel optical imaging technique that offers the advantage of rapid imaging of relevant biomarkers in live animals.MethodsAdvances in non-invasive fluorescence molecular tomographic (FMT) imaging, in combination with a variety of biological imaging agents, offer a unique, sensitive and quantifiable approach to assessing disease biology in living animals. Using vascular (AngioSense 750EX) and protease-activatable cathepsin B (Cat B 680 FAST) near infrared (NIR) fluorescence imaging agents to detect BBB breakdown and inflammation, respectively, we quantified brain and spinal cord changes in mice with relapsing-remitting PLP139-151-induced EAE and in response to tolerogenic therapy.ResultsFMT imaging and analysis techniques were carefully characterized and non-invasive imaging results corroborated by both ex vivo tissue imaging and comparison to clinical score results and histopathological analysis of CNS tissue. FMT imaging showed clear differences between control and diseased mice, and immune tolerance induction by antigen-coupled PLGA nanoparticles effectively blocked both disease induction and accumulation of imaging agents in the brain and spinal cord.ConclusionsCat B 680 FAST and AngioSense 750EX offered the combination best able to detect disease in both the brain and spinal cord, as well as the downregulation of disease by antigen-specific tolerance. Non-invasive optical tomographic imaging thus offers a unique approach to monitoring neuroinflammatory disease and therapeutic intervention in living mice with EAE.


Vaccine | 2011

Aerosol delivery of virus-like particles to the genital tract induces local and systemic antibody responses

Zoe Hunter; Ebenezer Tumban; Agnieszka Dziduszko; Bryce Chackerian

The induction of mucosal immune responses in the genital tract may be important for increasing the effectiveness of vaccines for sexually transmitted infections (STIs). In this study, we asked whether direct immunization of the mouse genital tract with a non-replicating virus-like particle (VLP)-based vaccine could induce local mucosal as well as systemic antibody responses. Using VLPs derived from two bacteriophages, Qβ and PP7, and from a mammalian virus that normally infects the genital tract, human papillomavirus (HPV), we show that intravaginal aerosol administration of VLPs can induce high titer IgG and IgA antibodies in the female genital tract as well as IgG in the sera. Using a mouse model for HPV infection, we show that intravaginal immunization with either HPV type 16 VLPs or with PP7 bacteriophage VLPs displaying a peptide derived from the HPV minor capsid protein L2 could protect mice from genital infection with an HPV16 pseudovirus. These results provide a general method for inducing genital mucosal and systemic antibody responses using VLP-based immunogens.


Neurobiology of Disease | 2017

Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice.

Su Ji Jeong; John G. Cooper; Igal Ifergan; Tammy McGuire; Dan Xu; Zoe Hunter; Sripadh Sharma; Derrick P. McCarthy; Stephen D. Miller; John A. Kessler

Intravenously infused synthetic 500nm nanoparticles composed of poly(lactide-co-glycolide) are taken up by blood-borne inflammatory monocytes via a macrophage scavenger receptor (macrophage receptor with collagenous structure), and the monocytes no longer traffic to sites of inflammation. Intravenous administration of the nanoparticles after experimental spinal cord injury in mice safely and selectively limited infiltration of hematogenous monocytes into the injury site. The nanoparticles did not bind to resident microglia, and did not change the number of microglia in the injured spinal cord. Nanoparticle administration reduced M1 macrophage polarization and microglia activation, reduced levels of inflammatory cytokines, and markedly reduced fibrotic scar formation without altering glial scarring. These findings thus implicate early-infiltrating hematogenous monocytes as highly selective contributors to fibrosis that do not play an indispensable role in gliosis after SCI. Further, the nanoparticle treatment reduced accumulation of chondroitin sulfate proteoglycans, increased axon density inside and caudal to the lesion site, and significantly improved functional recovery after both moderate and severe injuries to the spinal cord. These data provide further evidence that hematogenous monocytes contribute to inflammatory damage and fibrotic scar formation after spinal cord injury in mice. Further, since the nanoparticles are simple to administer intravenously, immunologically inert, stable at room temperature, composed of an FDA-approved material, and have no known toxicity, these findings suggest that the nanoparticles potentially offer a practical treatment for human spinal cord injury.


Nature Biotechnology | 2013

Erratum: Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis (Nature Biotechnology (2012) 30 (1217-1224))

Daniel R. Getts; Aaron Martin; Derrick P. McCarthy; Rachael L. Terry; Zoe Hunter; Woon Teck Yap; Meghann Teague Getts; Michael Pleiss; Xunrong Luo; Nicholas J. C. King; Lonnie D. Shea; Stephen D. Miller

In the version of this article initially published, there were two errors in the discussion of epigenetic marks on page 854. In sentence 4, paragraph 2 of the section “Genetic and epigenetic changes predictive of malignancy,” dimethylated and trimethylated H3K9 were said incorrectly to be “polycomb” marks. “Polycomb” has been deleted from the sentence, and the following two sentences inserted for clarification: “In ES cells these genes are held in a ‘transcription ready’ state by two marks, a repressive H3K27me mark and an active mark, H3K4me64. Changes in the balance of repressive versus active marks can alter the activity of these genes, hypothetically keeping cells in a proliferative state.” Further down in the paragraph, DNMT3L was described incorrectly as catalytic. The original text, “... related to activation of the de novo methyltransferase DNMT3L68” has been revised to “...and maintain expression of the de novo methyltransferase–like protein DNMT3L68. Expression of DNMT3L appears to be a common feature in pluripotent cells including ES, EC and embryonic germ cells.” The errors have been corrected in the HTML and PDF versions of the article.

Collaboration


Dive into the Zoe Hunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igal Ifergan

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Aaron Martin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Dan Xu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Hugh D. C. Smyth

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge