Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zohar Mukamel is active.

Publication


Featured researches published by Zohar Mukamel.


Nature | 2013

Derivation of novel human ground state naive pluripotent stem cells

Ohad Gafni; Leehee Weinberger; Abed AlFatah Mansour; Yair S. Manor; Elad Chomsky; Dalit Ben-Yosef; Yael Kalma; Sergey Viukov; Itay Maza; Asaf Zviran; Yoach Rais; Zohar Shipony; Zohar Mukamel; Vladislav Krupalnik; Mirie Zerbib; Shay Geula; Inbal Caspi; Dan Schneir; Tamar Shwartz; Shlomit Gilad; Daniela Amann-Zalcenstein; Sima Benjamin; Ido Amit; Amos Tanay; Rada Massarwa; Noa Novershtern; Jacob Hanna

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Nature | 2013

Deterministic direct reprogramming of somatic cells to pluripotency

Yoach Rais; Asaf Zviran; Shay Geula; Ohad Gafni; Elad Chomsky; Sergey Viukov; Abed AlFatah Mansour; Inbal Caspi; Vladislav Krupalnik; Mirie Zerbib; Itay Maza; Nofar Mor; Dror Baran; Leehee Weinberger; Diego Jaitin; David Lara-Astiaso; Ronnie Blecher-Gonen; Zohar Shipony; Zohar Mukamel; Tzachi Hagai; Shlomit Gilad; Daniela Amann-Zalcenstein; Amos Tanay; Ido Amit; Noa Novershtern; Jacob Hanna

Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.


Nature Genetics | 2012

Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues

Gilad Landan; Netta Mendelson Cohen; Zohar Mukamel; Amir Bar; Alina Molchadsky; Ran Brosh; Shirley Horn-Saban; Daniela Amann Zalcenstein; Naomi Goldfinger; Adi Zundelevich; Einav Nili Gal-Yam; Varda Rotter; Amos Tanay

DNA methylation has been comprehensively profiled in normal and cancer cells, but the dynamics that form, maintain and reprogram differentially methylated regions remain enigmatic. Here, we show that methylation patterns within populations of cells from individual somatic tissues are heterogeneous and polymorphic. Using in vitro evolution of immortalized fibroblasts for over 300 generations, we track the dynamics of polymorphic methylation at regions developing significant differential methylation on average. The data indicate that changes in population-averaged methylation occur through a stochastic process that generates a stream of local and uncorrelated methylation aberrations. Despite the stochastic nature of the process, nearly deterministic epigenetic remodeling emerges on average at loci that lose or gain resistance to methylation accumulation. Changes in the susceptibility to methylation accumulation are correlated with changes in histone modification and CTCF occupancy. Characterizing epigenomic polymorphism within cell populations is therefore critical to understanding methylation dynamics in normal and cancer cells.


Nature | 2014

Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells

Zohar Shipony; Zohar Mukamel; Netta Mendelson Cohen; Gilad Landan; Elad Chomsky; Shlomit Reich Zeliger; Yael Fried; Elena Ainbinder; Nir Friedman; Amos Tanay

Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.


Nature | 2016

Capturing pairwise and multi-way chromosomal conformations using chromosomal walks

Pedro Olivares-Chauvet; Zohar Mukamel; Aviezer Lifshitz; Omer Schwartzman; Noa Oded Elkayam; Yaniv Lubling; Gintaras Deikus; Robert Sebra; Amos Tanay

Chromosomes are folded into highly compacted structures to accommodate physical constraints within nuclei and to regulate access to genomic information. Recently, global mapping of pairwise contacts showed that loops anchoring topological domains (TADs) are highly conserved between cell types and species. Whether pairwise loops synergize to form higher-order structures is still unclear. Here we develop a conformation capture assay to study higher-order organization using chromosomal walks (C-walks) that link multiple genomic loci together into proximity chains in human and mouse cells. This approach captures chromosomal structure at varying scales. Inter-chromosomal contacts constitute only 7–10% of the pairs and are restricted by interfacing TADs. About half of the C-walks stay within one chromosome, and almost half of those are restricted to intra-TAD spaces. C-walks that couple 2–4 TADs indicate stochastic associations between transcriptionally active, early replicating loci. Targeted analysis of thousands of 3-walks anchored at highly expressed genes support pairwise, rather than hub-like, chromosomal topology at active loci. Polycomb-repressed Hox domains are shown by the same approach to enrich for synergistic hubs. Together, the data indicate that chromosomal territories, TADs, and intra-TAD loops are primarily driven by nested, possibly dynamic, pairwise contacts.


Nature Methods | 2016

UMI-4C for quantitative and targeted chromosomal contact profiling

Omer Schwartzman; Zohar Mukamel; Noa Oded-Elkayam; Pedro Olivares-Chauvet; Yaniv Lubling; Gilad Landan; Shai Izraeli; Amos Tanay

We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMIs) to derive high-complexity quantitative chromosome contact profiles with controlled signal-to-noise ratios. UMI-4C detects chromosomal interactions with improved sensitivity and specificity, and it can easily be multiplexed to allow robust comparison of contact distributions between loci and conditions. This approach may open the way to the incorporation of contact distributions into quantitative models of gene regulation.


Nature Genetics | 2013

Hypomethylation marks enhancers within transposable elements

Zohar Mukamel; Amos Tanay

Transposable elements (TEs) make up 50% of the human genome and are usually considered a mutational burden. A new study uses signatures of DNA hypomethylation to identify tissue-specific enhancers within TEs, providing fresh evidence that mobile DNA has a non-negligible role in genome regulation and evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome

Omer Schwartzman; Angela M. Savino; Michael Gombert; Chiara Palmi; Gunnar Cario; Martin Schrappe; Cornelia Eckert; Arend von Stackelberg; Jin Yan Huang; Michal Hameiri-Grossman; Smadar Avigad; Geertruy te Kronnie; Ifat Geron; Yehudit Birger; Avigail Rein; Giulia Zarfati; Ute Fischer; Zohar Mukamel; Martin Stanulla; Andrea Biondi; Giovanni Cazzaniga; Amedeo Vetere; Bridget K. Wagner; Zhu Chen; Sai-Juan Chen; Amos Tanay; Arndt Borkhardt; Shai Izraeli

Significance Children with Down syndrome are at increased risk for B-cell acute lymphoblastic leukemia (DS-ALL), often expressing cytokine receptor-like factor 2 (CRLF2). Here we studied matched diagnosis and relapse DS-ALLs to understand the pathogenesis of relapse. We confirm that enhanced JAK-STAT signaling frequently “drives” CRLF2pos DS-ALL at diagnosis, but discovered that clones with JAK mutations are unstable, suggesting that they also endowed the transformed cells with vulnerabilities. We find USP9X loss in up to 25% of CRLF2pos ALLs, and demonstrate that its ablation decreases the toxic effect of JAK2 hypersignaling. Thus, in CRLF2pos ALLs JAK-STAT signaling is often buffered by loss of USP9X. These results have therapeutic implications because they suggest that ALL cells can tolerate a limited range of JAK-STAT signaling. Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic “Philadelphia-like” ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are “relapse driving.” We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT “hypersignaling” may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.


PLOS Genetics | 2016

Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C.

Anna Hitrik; Malka Popliker; Dana Gancz; Zohar Mukamel; Aviezer Lifshitz; Omer Schwartzman; Amos Tanay; Lilach Gilboa

The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation.


Nature | 2015

Corrigendum: Derivation of novel human ground state naive pluripotent stem cells

Ohad Gafni; Leehee Weinberger; Abed AlFatah Mansour; Yair S. Manor; Elad Chomsky; Dalit Ben-Yosef; Yael Kalma; Sergey Viukov; Itay Maza; Asaf Zviran; Yoach Rais; Zohar Shipony; Zohar Mukamel; Vladislav Krupalnik; Mirie Zerbib; Shay Geula; Inbal Caspi; Dan Schneir; Tamar Shwartz; Shlomit Gilad; Daniela Amann-Zalcenstein; Sima Benjamin; Ido Amit; Amos Tanay; Rada Massarwa; Noa Novershtern; Jacob Hanna

This corrects the article DOI: 10.1038/nature12745

Collaboration


Dive into the Zohar Mukamel's collaboration.

Top Co-Authors

Avatar

Amos Tanay

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Elad Chomsky

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ido Amit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zohar Shipony

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Abed AlFatah Mansour

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Asaf Zviran

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Aviezer Lifshitz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inbal Caspi

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge