Zoltán Hegyi
University of Debrecen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zoltán Hegyi.
European Journal of Neuroscience | 2009
Zoltán Hegyi; Gréta Kis; Krisztina Holló; Catherine Ledent; Miklós Antal
A long line of experimental evidence indicates that endogenous cannabinoid mechanisms play important roles in nociceptive information processing in various areas of the nervous system including the spinal cord. Although it is extensively documented that the cannabinoid‐1 receptor (CB1‐R) is strongly expressed in the superficial spinal dorsal horn, its cellular distribution is poorly defined, hampering our interpretation of the effect of cannabinoids on pain processing spinal neural circuits. Thus, we investigated the cellular distribution of CB1‐Rs in laminae I and II of the rodent spinal dorsal horn with immunocytochemical methods. Axonal varicosities revealed a strong immunoreactivity for CB1‐R, but no CB1‐R expression was observed on dendrites and perikarya of neurons. Investigating the co‐localization of CB1‐R with markers of peptidergic and non‐peptidergic primary afferents, and axon terminals of putative glutamatergic and GABAergic spinal neurons we found that nearly half of the peptidergic (immunoreactive for calcitonin gene‐related peptide) and more than 20% of the non‐peptidergic (binding isolectin B4) nociceptive primary afferents, more than one‐third and approximately 20% of the axon terminals of putative glutamatergic (immunoreactive for vesicular glutamate transporter 2) and GABAergic (immunoreactive for glutamic acid decarboxylase; GAD65 and/or GAD67) spinal interneurons, respectively, were positively stained for CB1‐R. In addition to axon terminals, almost half of the astrocytic (immunoreactive for glial fibrillary acidic protein) and nearly 80% of microglial (immunoreactive for CD11b) profiles were also immunolabeled for CB1‐R. The findings suggest that the activity‐dependent release of endogenous cannabinoids activates a complex signaling mechanism in pain processing spinal neural circuits into which both neurons and glial cells may contribute.
Glia | 2012
Zoltán Hegyi; Krisztina Holló; Gréta Kis; Ken Mackie; Miklós Antal
It is generally accepted that the endocannabinoid system plays important roles in spinal pain processing. Although it is documented that cannabinoid‐1 receptors are strongly expressed in the superficial spinal dorsal horn, the cellular distribution of enzymes that can synthesize endocannabinoid ligands is less well studied. Thus, using immunocytochemical methods at the light and electron microscopic levels, we investigated the distribution of diacylglycerol lipase‐alpha (DGL‐α) and N‐acylphosphatidylethanolamine‐specific phospholipase D (NAPE‐PLD), enzymes synthesizing the endocannabinoid ligands, 2‐arachidonoylglycerol (2‐AG) and anandamide, respectively. Positive labeling was revealed only occasionally in axon terminals, but dendrites displayed strong immunoreactivity for both enzymes. However, the dendritic localization of DGL‐α and NAPE‐PLD showed a remarkably different distribution. DGL‐α immunolabeling in dentrites was always revealed at membrane compartments in close vicinity to synapses. In contrast to this, dendritic NAPE‐PLD labeling was never observed in association with synaptic contacts. In addition to dendrites, a substantial proportion of astrocytic (immunoreactive for GFAP) and microglial (immunoreactive for CD11b) profiles were also immunolabeled for both DGL‐α and NAPE‐PLD. Glial processes immunostained for DGL‐α were frequently found near to synapses in which the postsynaptic dendrite was immunoreactive for DGL‐α, whereas NAPE‐PLD immunoreactivity on glial profiles at the vicinity of synapses was only occasionally observed. Our results suggest that both neurons and glial cells can synthesize and release 2‐AG and anandamide in the superficial spinal dorsal horn. The 2‐AG can primarily be released by postsynaptic dendrites and glial processes adjacent to synapses, whereas anandamide can predominantly be released from nonsynaptic dendritic and glial compartments.
Brain Structure & Function | 2015
Áron Kőszeghy; Adrienn Kovács; Tamás Bíró; Peter Szucs; János Vincze; Zoltán Hegyi; Miklós Antal; Balázs Pál
The pedunculopontine nucleus (PPN) is known as the cholinergic part of the reticular activating system (RAS) and it plays an important role in transitions of slow-wave sleep to REM sleep and wakefulness. Although both exogenous and endocannabinoids affect sleep, the mechanism of endocannabinoid neuromodulation has not been characterized at cellular level in the PPN. In this paper, we demonstrate that both neurons and glial cells from the PPN respond to cannabinoid type 1 (CB1) receptor agonists. The neuronal response can be depolarization or hyperpolarization, while astrocytes exhibit more frequent calcium waves. All these effects are absent in CB1 gene-deficient mice. Blockade of the fast synaptic neurotransmission or neuronal action potential firing does not change the effect on the neuronal membrane potential significantly, while inhibition of astrocytic calcium waves by thapsigargin diminishes the response. Inhibition of group I metabotropic glutamate receptors (mGluRs) abolishes hyperpolarization, whereas blockade of group II mGluRs prevents depolarization. Initially active neurons and glial cells display weaker responses partially due to the increased endocannabinoid tone in their environment. Taken together, we propose that cannabinoid receptor stimulation modulates PPN neuronal activity in the following manner: active neurons may elicit calcium waves in astrocytes via endogenous CB1 receptor agonists. Astrocytes in turn release glutamate that activates different metabotropic glutamate receptors of neurons and modulate PPN neuronal activity.
The Journal of Comparative Neurology | 2015
Fariba Javdani; Krisztina Holló; Krisztina Hegedűs; Gréta Kis; Zoltán Hegyi; Klaudia Dócs; Yu Kasugai; Yugo Fukazawa; Ryuichi Shigemoto; Miklós Antal
γ‐Aminobutyric acid (GABA)‐ and glycine‐mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium–chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high‐resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3‐subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor‐immunoreactive dendrites, we found that gephyrin‐immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4–10‐µm‐long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons. J. Comp. Neurol. 523:1967–1983, 2015
Brain Structure & Function | 2017
Adrienn Kovács; Cs Bordás; Tamás Bíró; Zoltán Hegyi; Miklós Antal; Peter Szucs; Balázs Pál
The pedunculopontine nucleus (PPN), a cholinergic nucleus of the reticular activating system, is known to be involved in the regulation of sleep and wakefulness. Endogenous and exogenous cannabinoids, by systemic or local administration to the pedunculopontine nucleus, can both influence sleep. We previously demonstrated that activation of astrocytes by cannabinoid type 1 (CB1) receptor agonists was able to modulate the membrane potential of PPN neurons, even in the presence of blockers of fast synaptic neurotransmission. In the present work, we provide evidence that synaptic inputs of PPN neurons are also affected by activation of presynaptic and astrocytic CB1 receptors. Using slice electrophysiology combined with calcium imaging, optogenetics and immunohistochemistry, we revealed a direct presynaptic inhibitory action on inhibitory postsynaptic currents, along with a mild increase of excitatory postsynaptic currents during CB1 receptor stimulation. Besides inhibition of excitatory and inhibitory neurotransmission through stimulation of presynaptic CB1 receptors, astrocyte- and mGluR-dependent tonic inhibition and excitation also developed. The mild stimulatory action of CB1 receptor activation on excitatory neurotransmission is the combination of astrocyte-dependent tonic excitation on excitatory neurons and the canonical presynaptic CB1 receptor activation and consequential inhibition of excitatory synaptic neurotransmission, whereas the astrocyte-dependent stimulatory action was not observed in inhibitory neurotransmission within the PPN. Our findings demonstrate that endocannabinoids act in the PPN via a dual pathway, consisting of a direct presynaptic and an indirect, astrocyte-mediated component, regulating synaptic strength and neuronal activity via independent mechanisms.
Frontiers in Cellular Neuroscience | 2017
Klaudia Dócs; Zoltán Mészár; Sándor Gonda; Attila Kiss-Szikszai; Krisztina Holló; Miklós Antal; Zoltán Hegyi
Endocannabinoids are pleiotropic lipid messengers that play pro-homeostatic role in cellular physiology by strongly influencing intracellular Ca2+ concentration through the activation of cannabinoid receptors. One of the best-known endocannabinoid ‘2-AG’ is chemically unstable in aqueous solutions, thus its molecular rearrangement, resulting in the formation of 1-AG, may influence 2-AG-mediated signaling depending on the relative concentration and potency of the two isomers. To predict whether this molecular rearrangement may be relevant in physiological processes and in experiments with 2-AG, here we studied if isomerization of 2-AG has an impact on 2-AG-induced, CB1-mediated Ca2+ signaling in vitro. We found that the isomerization-dependent drop in effective 2-AG concentration caused only a weak diminution of Ca2+ signaling in CB1 transfected COS7 cells. We also found that 1-AG induces Ca2+ transients through the activation of CB1, but its working concentration is threefold higher than that of 2-AG. Decreasing the concentration of 2-AG in parallel to the prevention of 1-AG formation by rapid preparation of 2-AG solutions, caused a significant diminution of Ca2+ signals. However, various mixtures of the two isomers in a fix total concentration – mimicking the process of isomerization over time – attenuated the drop in 2-AG potency, resulting in a minor decrease in CB1 mediated Ca2+ transients. Our results indicate that release of 2-AG into aqueous medium is accompanied by its isomerization, resulting in a drop of 2-AG concentration and simultaneous formation of the similarly bioactive isomer 1-AG. Thus, the relative concentration of the two isomers with different potency and efficacy may influence CB1 activation and the consequent biological responses. In addition, our results suggest that 1-AG may play role in stabilizing the strength of cannabinoid signal in case of prolonged 2-AG dependent cannabinoid mechanisms.
Brain Structure & Function | 2017
Anita Balázs; Zoltán Mészár; Krisztina Hegedűs; Annamária Kenyeres; Zoltán Hegyi; Klaudia Dócs; Miklós Antal
The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.
Histology and Histopathology | 2015
Kai Kaarniranta; Eszter Szalai; A Smedowski; Zoltán Hegyi; Niko Kivinen; Johanna Viiri; Bogumil Wowra; Dariusz Dobrowolski; László Módis; András Berta; Edward Wylegala; Szabolcs Felszeghy
Macular corneal dystrophy is a rare autosomal recessive eye disease affecting primarily the corneal stroma. Abnormal accumulation of proteoglycan aggregates has been observed intra- and extracellularly in the stromal layer. In addition to the stromal keratocytes and corneal lamellae, deposits are also present in the basal epithelial cells, endothelial cells and Descemets membrane. Misfolding of proteins has a tendency to gather into aggregating deposits. We studied interaction of molecular chaperones and proteasomal clearance in macular dystrophy human samples and in human corneal HCE-2 epithelial cells. Seven cases of macular corneal dystrophy and four normal corneal buttons collected during corneal transplantation were examined for their expression patterns of heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62. In response to proteasome inhibition the same proteins were analyzed by western blotting. Slit-lamp examination, in vivo confocal cornea microscopy and transmission electron microscopy were used for morphological analyses. Heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62 were upregulated in both the basal corneal epithelial cells and the stromal keratocytes in macular corneal dystrophy samples that coincided with an increased expression of the same molecules under proteasome inhibition in the HCE-2 cells in vitro. We propose a novel regulatory mechanism that connects the molecular chaperone and proteasomal clearance system in the pathogenesis of macular corneal dystrophy.
Scientific Reports | 2018
Zoltán Hegyi; Tamás Oláh; Áron Kőszeghy; Fabiana Piscitelli; Krisztina Holló; Balázs Pál; László Csernoch; Vincenzo Di Marzo; Miklós Antal
Accumulating evidence supports the role of astrocytes in endocannabinoid mediated modulation of neural activity. It has been reported that some astrocytes express the cannabinoid type 1 receptor (CB1-R), the activation of which is leading to Ca2+ mobilization from internal stores and a consecutive release of glutamate. It has also been documented that astrocytes have the potential to produce the endocannabinoid 2-arachidonoylglycerol, one of the best known CB1-R agonist. However, no relationship between CB1-R activation and 2-arachidonoylglycerol production has ever been demonstrated. Here we show that rat spinal astrocytes co-express CB1-Rs and the 2-arachidonoylglycerol synthesizing enzyme, diacylglycerol lipase-alpha in close vicinity to each other. We also demonstrate that activation of CB1-Rs induces a substantial elevation of intracellular Ca2+ concentration in astrocytes. Finally, we provide evidence that the evoked Ca2+ transients lead to the production of 2-arachidonoylglycerol in cultured astrocytes. The results provide evidence for a novel cannabinoid induced endocannabinoid release mechanism in astrocytes which broadens the bidirectional signaling repertoire between astrocytes and neurons.
European Archives of Oto-rhino-laryngology | 2013
Tamás Karosi; Péter Csomor; Zoltán Hegyi; István Sziklai