Zoltán Ivics
Paul Ehrlich Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zoltán Ivics.
Nature Genetics | 2000
Stephen R. Yant; Leonard Meuse; Winnie Chiu; Zoltán Ivics; Zsuzsanna Izsvák; Mark A. Kay
The development of non-viral gene-transfer technologies that can support stable chromosomal integration and persistent gene expression in vivo is desirable. Here we describe the successful use of transposon technology for the nonhomologous insertion of foreign genes into the genomes of adult mammals using naked DNA. We show that the Sleeping Beauty transposase can efficiently insert transposon DNA into the mouse genome in approximately 5–6% of transfected mouse liver cells. Chromosomal transposition resulted in long-term expression (>5 months) of human blood coagulation factor IX at levels that were therapeutic in a mouse model of haemophilia B. Our results establish DNA-mediated transposition as a new genetic tool for mammals, and provide new strategies to improve existing non-viral and viral vectors for human gene therapy applications.
Nature Genetics | 2009
Lajos Mátés; Marinee Chuah; Eyayu Belay; Boris Jerchow; Namitha Manoj; Abel Acosta-Sanchez; Dawid P Grzela; Andrea Schmitt; Katja Becker; Janka Matrai; L Ma; Ermira Samara-Kuko; Conny Gysemans; Diana Pryputniewicz; Csaba Miskey; Bradley S. Fletcher; Thierry Vandendriessche; Zoltán Ivics; Zsuzsanna Izsvák
The Sleeping Beauty (SB) transposon is a promising technology platform for gene transfer in vertebrates; however, its efficiency of gene insertion can be a bottleneck in primary cell types. A large-scale genetic screen in mammalian cells yielded a hyperactive transposase (SB100X) with ∼100-fold enhancement in efficiency when compared to the first-generation transposase. SB100X supported 35–50% stable gene transfer in human CD34+ cells enriched in hematopoietic stem or progenitor cells. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution. In addition, SB100X supported sustained (>1 year) expression of physiological levels of factor IX upon transposition in the mouse liver in vivo. Finally, SB100X reproducibly resulted in 45% stable transgenesis frequencies by pronuclear microinjection into mouse zygotes. The newly developed transposase yields unprecedented stable gene transfer efficiencies following nonviral gene delivery that compare favorably to stable transduction efficiencies with integrating viral vectors and is expected to facilitate widespread applications in functional genomics and gene therapy.
Trends in Genetics | 1999
Ronald H.A. Plasterk; Zsuzsanna Izsvak; Zoltán Ivics
Transgenic technology is currently applied to several animal species of agricultural or medical importance, such as fish, cattle, mosquitos and parasitic worms. However, the repertoire of genetic tools used for molecular analyses of mice and Drosophila is not always applicable to other species. For example, while retroviral enhancer-trap experiments in mice can be based on embryonic stem (ES) cell technology, this is not currently an option with other animals. Similarly, the germline transformation of Drosophila depends on the use of the P-element transposon, which does not jump in other genera. This article analyses the main characteristics of Tc1/mariner transposable elements, examines some of the factors that have contributed to their evolutionary success, and describes their potential, as well as their limitations, for transgenesis and insertional mutagenesis in diverse animals.
Journal of Molecular Biology | 2002
Thomas J. Vigdal; Christopher D. Kaufman; Zsuzsanna Izsvák; Daniel F. Voytas; Zoltán Ivics
Sleeping Beauty (SB) is the most active Tc1/mariner-type transposable element in vertebrates, and is therefore a valuable vector for transposon mutagenesis in vertebrate models and for human gene therapy. We have analyzed factors affecting target site selection of SB in mammalian cells, by generating transposition events from extrachromosomal plasmids to chromosomes. In contrast to the local hopping observed when transposition is induced from a chromosomal context, mapping of 138 unique SB insertions on human chromosomes showed a fairly random genomic distribution, and a 35% occurrence of transposition into genes. Inspection of the DNA flanking the sites of element integration revealed significant differences from random DNA in both primary sequence and physical properties. The consensus sequence of SB target sites was found to be a palindromic AT-repeat, ATATATAT, in which the central TA is the canonical target site. We found however, that target site selection is determined primarily on the level of DNA structure, and not by specific base-pair interactions. Computational analyses revealed that insertion sites tend to have a bendable structure and a palindromic pattern of potential hydrogen-bonding sites in the major groove of the DNA. These features appear conserved in the Tc1/mariner family of transposons and in other, distantly related elements that share a common catalytic domain of the transposase, and integrate fairly randomly. No similar target site preference was found for non-randomly integrating elements. Our results suggest common factors influencing target site selection of a wide range of transposable elements.
Nature Methods | 2009
Zoltán Ivics; Meng Amy Li; Lajos Mátés; Jef D. Boeke; Andras Nagy; Allan Bradley; Zsuzsanna Izsvák
Transposable elements are DNA segments with the unique ability to move about in the genome. This inherent feature can be exploited to harness these elements as gene vectors for genome manipulation. Transposon-based genetic strategies have been established in vertebrate species over the last decade, and current progress in this field suggests that transposable elements will serve as indispensable tools. In particular, transposons can be applied as vectors for somatic and germline transgenesis, and as insertional mutagens in both loss-of-function and gain-of-function forward mutagenesis screens. In addition, transposons will gain importance in future cell-based clinical applications, including nonviral gene transfer into stem cells and the rapidly developing field of induced pluripotent stem cells. Here we provide an overview of transposon-based methods used in vertebrate model organisms with an emphasis on the mouse system and highlight the most important considerations concerning genetic applications of the transposon systems.
Molecular Therapy | 2010
Ivana Grabundzija; Markus Irgang; Lajos Mátés; Eyayu Belay; Janka Matrai; Andreas Gogol-Döring; Koichi Kawakami; Wei Chen; Patricia Ruiz; Marinee Chuah; Thierry Vandendriessche; Zsuzsanna Izsvák; Zoltán Ivics
Transposon-based gene vectors have become indispensable tools in vertebrate genetics for applications ranging from insertional mutagenesis and transgenesis in model species to gene therapy in humans. The transposon toolkit is expanding, but a careful, side-by-side characterization of the diverse transposon systems has been lacking. Here we compared the Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposons with respect to overall activity, overproduction inhibition (OPI), target site selection, transgene copy number as well as long-term expression in human cells. SB was the most efficient system under conditions where the availability of the transposon DNA is limiting the transposition reaction including hard-to-transfect hematopoietic stem/progenitor cells (HSCs), and the most sensitive to OPI, underpinning the need for careful optimization of the transposon components. SB and PB were about equally active, and both more efficient than Tol2, under nonrestrictive conditions. All three systems provided long-term transgene expression in human cells with minimal signs of silencing. Indeed, mapping of Tol2 insertion sites revealed significant underrepresentation within chromosomal regions with H3K27me3 histone marks typically associated with transcriptionally repressed heterochromatin. SB, Tol2, and PB constitute complementary research tools for gene transfer in mammalian cells with important implications for fundamental and translational research.
Cellular and Molecular Life Sciences | 2009
Ludivine Sinzelle; Zsuzsanna Izsvák; Zoltán Ivics
Abstract.Transposable elements (TEs) are commonly viewed as molecular parasites producing mainly neutral or deleterious effects in host genomes through their ability to move. However, during the past two decades, major interest has been focusing on the positive contribution of these elements in the evolution of gene regulation and in the creation of diverse structural host genes. Indeed, DNA transposons carry an attractive and elaborate enzymatic machinery as well as DNA components that have been co-opted in several cases by the host genome via an evolutionary process referred to as molecular domestication. A large number of transposon-derived genes known to date have been recruited by the host to function as transcriptional regulators; however, the biological role of the majority of them remains undetermined. Our knowledge on the structure, distribution, evolution and mechanism of transposons will continue to provide important contributions to our understanding of host genome functions.
Nature | 2014
Jichang Wang; Gangcai Xie; Manvendra Singh; Avazeh T. Ghanbarian; Tamás Raskó; Attila Szvetnik; Huiqiang Cai; Daniel Besser; Alessandro Prigione; Nina V. Fuchs; Gerald G. Schumann; Wei Chen; Matthew C. Lorincz; Zoltán Ivics; Laurence D. Hurst; Zsuzsanna Izsvák
Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9–HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency.
Blood | 2009
Thierry Vandendriessche; Zoltán Ivics; Zsuzsanna Izsvák; Marinee Chuah
Effective gene therapy requires robust delivery of the desired genes into the relevant target cells, long-term gene expression, and minimal risks of secondary effects. The development of efficient and safe nonviral vectors would greatly facilitate clinical gene therapy studies. However, nonviral gene transfer approaches typically result in only limited stable gene transfer efficiencies in most primary cells. The use of nonviral gene delivery approaches in conjunction with the latest generation transposon technology based on Sleeping Beauty (SB) or piggyBac transposons may potentially overcome some of these limitations. In particular, a large-scale genetic screen in mammalian cells yielded a novel hyperactive SB transposase, resulting in robust and stable gene marking in vivo after hematopoietic reconstitution with CD34(+) hematopoietic stem/progenitor cells in mouse models. Moreover, the first-in-man clinical trial has recently been approved to use redirected T cells engineered with SB for gene therapy of B-cell lymphoma. Finally, induced pluripotent stem cells could be generated after genetic reprogramming with piggyBac transposons encoding reprogramming factors. These recent developments underscore the emerging potential of transposons in gene therapy applications and induced pluripotent stem generation for regenerative medicine.
Cellular and Molecular Life Sciences | 2005
Csaba Miskey; Zsuzsanna Izsvák; Koichi Kawakami; Zoltán Ivics
Abstract.Genome sequences of many model organisms of developmental or agricultural importance are becoming available. The tremendous amount of sequence data is fuelling the next phases of challenging research: annotating all genes with functional information, and devising new ways for the experimental manipulation of vertebrate genomes. Transposable elements are known to be efficient carriers of foreign DNA into cells. Notably, members of the Tc1/mariner and the hAT transposon families retain their high transpositional activities in species other than their hosts. Indeed, several of these elements have been successfully used for transgenesis and insertional mutagenesis, expanding our abilities in genome manipulations in vertebrate model organisms. Transposon-based genetic tools can help scientists to understand mechanisms of embryonic development and pathogenesis, and will likely contribute to successful human gene therapy. We discuss the possibilities of transposon-based techniques in functional genomics, and review the latest results achieved by the most active DNA transposons in vertebrates. We put emphasis on the evolution and regulation of members of the best-characterized and most widely used Tc1/mariner family.