Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zophonías O. Jónsson is active.

Publication


Featured researches published by Zophonías O. Jónsson.


Gene | 1995

Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus, and overproduction, purification and characterization of two thermophilic DNA ligases

Sigrídur H. Thorbjarnardóttir; Zophonías O. Jónsson; Ólafur S. Andrésson; Jakob K. Kristjansson; Gudmundur Eggertsson; Astridur Palsdottir

In this paper we describe the cloning and sequence analysis of a gene encoding DNA ligase (Lig; EC 6.5.1.2) from the thermophilic bacterium Rhodothermus marinus (Rm). We also describe the overexpression of the Lig-encoding genes of Rm and the thermophile, Thermus scotoductus (Ts), in Escherichia coli, and the purification and characterization of the overproduced Lig. The Rm lig gene encodes a protein of 712 amino acids (aa) with a calculated molecular mass of 79,487 Da. Comparison with published sequences of bacterial Lig revealed significant homology between the NAD(+)-utilizing Lig, and alignment of their aa sequences revealed several blocks of conserved residues. Both of the purified Lig exhibit nick-closing activity over a wide range of temperatures. Under our assay conditions the Rm Lig was active at 5-75 degrees C with apparent optimal activity above 55 degrees C. The Ts enzyme showed activity at 15-75 degrees C with optimal activity above 65 degrees C. The half-life of the Lig at 91 degrees C was estimated to be 7 min for the Rm Lig and 26 min for the Ts Lig.


Fungal Biology | 2009

Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea.

Andrey N. Gagunashvili; Snorri P. Davidsson; Zophonías O. Jónsson; Ólafur S. Andrésson

Lichens and most ascomycete fungi produce polyketide secondary metabolites often with valuable biological activities. Their biosynthesis is primarily governed by large iterative multifunctional type I polyketide synthases. Although there has been good progress studying filamentous non-lichenized fungi, there is limited information on polyketide biosynthesis in lichens and their mycobionts, due to their slow growth, difficulties in establishing pure cultures, and the absence of methods for direct genetic manipulation. However, heterologous expression in a surrogate host offers an alternative approach for exploring lichen polyketide biosynthesis. Here, we report cloning of a type I polyketide synthase gene from the foliose lichen Solorina crocea and its heterologous transcription in the filamentous fungus Aspergillus oryzae, including processing of the transcript. No new polyketide product was detected. The lichen polyketide synthase showed greatest homology with uncharacterized genes from filamentous fungi and lower homology with proteins catalysing biosynthesis of the decaketide alternapyrone and the tetraketide side-chain of squalestatin. The technology platform utilized here presents a useful tool for functional characterization of fungal biosynthetic genes and provides a means for novel production of valuable compounds.


Fungal Biology | 2012

Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: Features and phylogeny

Basil Britto Xavier; Vivian Miao; Zophonías O. Jónsson; Ólafur S. Andrésson

Mitochondrial genomes from the fungal partners of two terricolous foliose lichen symbioses, Peltigera membranacea and Peltigera malacea, have been determined using metagenomic approaches, including RNA-seq. The roughly 63 kb genomes show all the major features found in other Pezizomycotina, such as unidirectional transcription, 14 conserved protein genes, genes for the two subunit rRNAs and for a set of 26 tRNAs used in translating the 62 amino acid codons. In one of the tRNAs a CAU anticodon is proposed to be modified, via the action of the nuclear-encoded enzyme, tRNA Ile lysidine synthase, so that it recognizes the codon AUA (Ile) instead of AUG (Met). The overall arrangements and sequences of the two circular genomes are similar, the major difference being the inversion and deterioration of a gene encoding a type B DNA polymerase. Both genomes encode the RNA component of RNAse P, a feature seldom found in ascomycetes. The difference in genome size from the minimal ascomycete mitochondrial genomes is largely due to 17 and 20 group I introns, respectively, most associated with homing endonucleases and all found within protein-coding genes and the gene encoding the large subunit rRNA. One new intron insertion point was found, and an unusually small exon of seven nucleotides (nt) was identified and verified by RNA sequencing. Comparative analysis of mitochondrion-encoded proteins places the Peltigera spp., representatives of the class Lecanoromycetes, close to Leotiomycetes, Dothidiomycetes, and Sordariomycetes, in contrast to phylogenies found using nuclear genes.


Fish & Shellfish Immunology | 2009

Isolation of two C-reactive protein homologues from cod (Gadus morhua L.) serum.

Berglind Gisladottir; Sigridur Lara Gudmundsdottir; Linton Brown; Zophonías O. Jónsson; Bergljót Magnadóttir

Pentraxins are important molecules in innate defence and play a role in the acute phase response of both mammals and fish. Isolation of cod pentraxins by affinity chromatography using phosphorylcholine agarose revealed two pentraxin-like proteins, referred to as PI and PII proteins. These varied in their overall charge, pentameric and subunit molecular size, glycosylation and N-terminal amino acid sequences. The PI protein was homologous with the CRP-like pentraxin previously described in cod whereas the PII protein was a new CRP homologue, which was characterized by substantial individual heterogeneity with regard to subunit size and relative density. The results indicate considerable genetic variations in the cod pentraxins.


Fish & Shellfish Immunology | 2011

The acute phase response of Atlantic cod (Gadus morhua): Humoral and cellular response

Bergljót Magnadóttir; Sigridur S. Audunsdottir; Birkir Th. Bragason; Berglind Gisladottir; Zophonías O. Jónsson; Sigridur Lara Gudmundsdottir

Intra-muscular injection of turpentine oil was used to induce acute phase response (APR) in Atlantic cod (Gadus morhua L.). The effects on the serum cortisol, total protein, IgM and pentraxin concentration were examined as well as the effects on natural antibody, anti-trypsin and leukocyte respiratory burst activity. The turpentine injection resulted in a 26 fold increase in the cortisol level after 72 h. Slightly reduced serum protein level in both groups was attributed to the restricted feeding during the experimental period. The IgM serum concentration was significantly reduced after 168 h in the turpentine treated fish while the natural antibody activity was not affected. The anti-trypsin activity was initially suppressed but recovered to normal levels at the end of the experiment. The turpentine injection had little effect on the serum level of the pentraxins, CRP-PI and CRP-PII. The respiratory burst activity was significantly suppressed after 72 h. It is concluded that 1) cod shows a relatively slow humoral and cellular response to APR induction, 2) the increase in serum cortisol level may be the key modulator of the mainly suppressive effects on the immune parameters and 3) pentraxins are not typical acute phase proteins in cod.


PLOS ONE | 2013

Validation of reference genes for expression studies during craniofacial development in arctic charr.

Ehsan Pashay Ahi; Jóhannes Guðbrandsson; Kalina H. Kapralova; Sigríður Rut Franzdóttir; Sigurður S. Snorrason; Valerie H. Maier; Zophonías O. Jónsson

Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos of different Arctic charr morphotypes.


Evodevo | 2014

Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr

Ehsan Pashay Ahi; Kalina H. Kapralova; Arnar Palsson; Valerie H. Maier; Jóhannes Gudbrandsson; Sigurdur S. Snorrason; Zophonías O. Jónsson; Sigrídur Rut Franzdóttir

BackgroundUnderstanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic).ResultsFour Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs.ConclusionOur comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.


Fish & Shellfish Immunology | 2012

The acute phase response of cod (Gadus morhua L.): expression of immune response genes.

Sigridur S. Audunsdottir; Bergljót Magnadóttir; Berglind Gisladottir; Zophonías O. Jónsson; Birkir Th. Bragason

An acute phase response (APR) was experimentally induced in Atlantic cod (Gadus morhua L.) by intramuscular injection of turpentine oil. The change in the expression of immune related genes was monitored in the anterior kidney and the spleen over a period of 7 days. The genes examined were two types of pentraxins, apolipoprotein A1 (ApoA-I), the complement component C3, interleukin-1β (IL-1β), transferrin, cathelicidin, and hepcidin. All genes were constitutively expressed in both organs and their expression amplified by the turpentine injection. A pattern of response was observed both with respect to the organ preference and to the timing of a maximum response. The increased gene expression of the pentraxins, ApoA-I and C3 was restricted to the anterior kidney, the gene expression of IL-1β, cathelicidin, and transferrin increased in both organs, while hepcidin gene expression was only significantly increased in the spleen. The pentraxins and ApoA-I appear to be early mediators of APR in cod, possibly stimulating C3 and IL-1β response, while the antimicrobial peptides may play a minor role. The increase in transferrin gene expression in both organs, and apparent indifference to cortisol release associated with the turpentine injection, suggests that this could be a typical acute phase protein in cod.


PLOS ONE | 2014

Patterns of MiRNA Expression in Arctic Charr Development

Kalina H. Kapralova; Sigrídur Rut Franzdóttir; Hákon Jónsson; Sigurður S. Snorrason; Zophonías O. Jónsson

Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation.


PeerJ | 2016

Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development

Ehsan Pashay Ahi; Benjamin S. Walker; Christopher S. Lassiter; Zophonías O. Jónsson

The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E2 during larval head development.

Collaboration


Dive into the Zophonías O. Jónsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge