Arnar Palsson
University of Iceland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnar Palsson.
Science | 2007
Anna Helgadottir; Gudmar Thorleifsson; Andrei Manolescu; Solveig Gretarsdottir; Thorarinn Blondal; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asgeir Sigurdsson; Adam Baker; Arnar Palsson; Gisli Masson; Daniel F. Gudbjartsson; Kristinn P. Magnusson; Karl Andersen; Allan I. Levey; Valgerdur M. Backman; Sigurborg Matthiasdottir; Thorbjorg Jonsdottir; Stefan Palsson; Helga Einarsdottir; Steinunn Gunnarsdottir; Arnaldur Gylfason; Viola Vaccarino; W. Craig Hooper; Muredach P. Reilly; Christopher B. Granger; Harland Austin; Daniel J. Rader; Svati H. Shah; Arshed A. Quyyumi
The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.
Nature | 2007
Daniel F. Gudbjartsson; David O. Arnar; Anna Helgadottir; Solveig Gretarsdottir; Hilma Holm; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Adam Baker; Gudmar Thorleifsson; Kristleifur Kristjansson; Arnar Palsson; Thorarinn Blondal; Patrick Sulem; Valgerdur M. Backman; Gudmundur A. Hardarson; Ebba Palsdottir; Agnar Helgason; Runa Sigurjonsdottir; Jon T. Sverrisson; Konstantinos Kostulas; Maggie C.Y. Ng; Larry Baum; Wing Yee So; Ka Sing Wong; Juliana C.N. Chan; Karen L. Furie; Steven M. Greenberg; Michelle Sale; Peter J. Kelly; Calum A. MacRae
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans and is characterized by chaotic electrical activity of the atria. It affects one in ten individuals over the age of 80 years, causes significant morbidity and is an independent predictor of mortality. Recent studies have provided evidence of a genetic contribution to AF. Mutations in potassium-channel genes have been associated with familial AF but account for only a small fraction of all cases of AF. We have performed a genome-wide association scan, followed by replication studies in three populations of European descent and a Chinese population from Hong Kong and find a strong association between two sequence variants on chromosome 4q25 and AF. Here we show that about 35% of individuals of European descent have at least one of the variants and that the risk of AF increases by 1.72 and 1.39 per copy. The association with the stronger variant is replicated in the Chinese population, where it is carried by 75% of individuals and the risk of AF is increased by 1.42 per copy. A stronger association was observed in individuals with typical atrial flutter. Both variants are adjacent to PITX2, which is known to have a critical function in left–right asymmetry of the heart.
Nature Genetics | 2007
Patrick Sulem; Daniel F. Gudbjartsson; Simon N. Stacey; Agnar Helgason; Thorunn Rafnar; Kristinn P. Magnusson; Andrei Manolescu; Ari Karason; Arnar Palsson; Gudmar Thorleifsson; Margret Jakobsdottir; Stacy Steinberg; Snæbjörn Pálsson; Fridbert Jonasson; Bardur Sigurgeirsson; Kristin Thorisdottir; Rafn Ragnarsson; Kristrun R. Benediktsdottir; Katja K. Aben; Lambertus A. Kiemeney; Jón Ólafsson; Jeffrey R. Gulcher; A. Kong; Unnur Thorsteinsdottir; Kari Stefansson
Hair, skin and eye colors are highly heritable and visible traits in humans. We carried out a genome-wide association scan for variants associated with hair and eye pigmentation, skin sensitivity to sun and freckling among 2,986 Icelanders. We then tested the most closely associated SNPs from six regions—four not previously implicated in the normal variation of human pigmentation—and replicated their association in a second sample of 2,718 Icelanders and a sample of 1,214 Dutch. The SNPs from all six regions met the criteria for genome-wide significance. A variant in SLC24A4 is associated with eye and hair color, a variant near KITLG is associated with hair color, two coding variants in TYR are associated with eye color and freckles, and a variant on 6p25.3 is associated with freckles. The fifth region provided refinements to a previously reported association in OCA2, and the sixth encompasses previously described variants in MC1R.
Nature Genetics | 2008
Patrick Sulem; Daniel F. Gudbjartsson; Simon N. Stacey; Agnar Helgason; Thorunn Rafnar; Margret Jakobsdottir; Stacy Steinberg; Sigurjon A. Gudjonsson; Arnar Palsson; Gudmar Thorleifsson; Snæbjörn Pálsson; Bardur Sigurgeirsson; Kristin Thorisdottir; Rafn Ragnarsson; Kristrun R. Benediktsdottir; Katja K. Aben; Sita H. Vermeulen; Alisa M. Goldstein; Margaret A. Tucker; Lambertus A. Kiemeney; Jón Ólafsson; Jeffrey R. Gulcher; Augustine Kong; Unnur Thorsteinsdottir; Kari Stefansson
We present results from a genome-wide association study for variants associated with human pigmentation characteristics among 5,130 Icelanders, with follow-up analyses in 2,116 Icelanders and 1,214 Dutch individuals. Two coding variants in TPCN2 are associated with hair color, and a variant at the ASIP locus shows strong association with skin sensitivity to sun, freckling and red hair, phenotypic characteristics similar to those affected by well-known mutations in MC1R.
PLOS Biology | 2005
Michael Ludwig; Arnar Palsson; Elena Alekseeva; Casey M. Bergman; Janaki Nathan; Martin Kreitman
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Susan E. Lott; Martin Kreitman; Arnar Palsson; Elena Alekseeva; Michael Ludwig
Segmentation in Drosophila embryogenesis occurs through a hierarchical cascade of regulatory gene expression driven by the establishment of a diffusion-mediated morphogen gradient. Here, we investigate the response of this pattern formation process to genetic variation and evolution in egg size. Specifically, we ask whether spatial localization of gap genes Kruppel (Kr) and giant (gt) and the pair-rule gene even-skipped (eve) during cellularization is robust to genetic variation in embryo length in three Drosophila melanogaster isolines and two closely related species. We identified two wild-derived strains of D. melanogaster whose eggs differ by ≈25% in length when reared under identical conditions. These two lines, a D. melanogaster laboratory stock (w1118), and offspring from crosses between the lines all exhibit precise scaling in the placement of gap and pair-rule gene expression along the anterior–posterior axis in relation to embryo length. Genetic analysis indicates that this scaling is maternally controlled. Maternal regulation of scaling must be required for consistent localization of segmentation gene expression because embryo size, a genetically variable and adaptive trait, is maternally inherited. We also investigated spatial scaling between these D. melanogaster lines and single lines of Drosophila sechellia and Drosophila simulans, the latter two differing by ≈25% in egg length. In contrast to the robust scaling we observed within species, localization of gene expression relative to embryo length differs significantly between the three species. Thus, the developmental mechanism that assures robust scaling within a species does not prevent rapid evolution between species.
Development Genes and Evolution | 2000
Arnar Palsson; Greg Gibson
Abstract Quantitative complementation tests provide a quick test of the hypothesis that a particular gene contributes to segregating phenotypic variation. A set of wild-type alleles is assayed for variation in their ability to complement the degree of dominance of the quantitative effect of a loss of function allele. Analysis of 15 loci known to be involved in wing patterning in Drosophila melanogaster suggests that the genes decapentaplegic, thickveins, EGFR, argos and hedgehog, each of which are involved in secreted growth factor signaling, may contribute to wing shape variation. The phenotype of one deficiency, Df(2R)Px2, which removes blistered/Plexate, is also highly sensitive to the wild-type genetic background and at intermediate expressivity reveals six ectopic veins. These form in the same locations as a projection of the ancestral pattern of dipteran wing veins onto the D. melanogaster wing. This atavistic phenotype indicates that the wing vein prepatterning mechanism can be conserved in highly derived species, and implies that homoplasic venation patterns may be produced by derepression of vein primordia.
BMC Genetics | 2005
Arnar Palsson; James Dodgson; Ian Dworkin; Greg Gibson
BackgroundQuantitative differences between individuals stem from a combination of genetic and environmental factors, with the heritable variation being shaped by evolutionary forces. Drosophila wing shape has emerged as an attractive system for genetic dissection of multi-dimensional traits. We utilize several experimental genetic methods to validation of the contribution of several polymorphisms in the Epidermal growth factor receptor (Egfr) gene to wing shape and size, that were previously mapped in populations of Drosophila melanogaster from North Carolina (NC) and California (CA). This re-evaluation utilized different genetic testcrosses to generate heterozygous individuals with a variety of genetic backgrounds as well as sampling of new alleles from Kenyan stocks.ResultsOnly one variant, in the Egfr promoter, had replicable effects in all new experiments. However, expanded genotyping of the initial sample of inbred lines rendered the association non-significant in the CA population, while it persisted in the NC sample, suggesting population specific modification of the quantitative trait nucleotide QTN effect.ConclusionDissection of quantitative trait variation to the nucleotide level can identify sites with replicable effects as small as one percent of the segregating genetic variation. However, the testcross approach to validate QTNs is both labor intensive and time-consuming, and is probably less useful than resampling of large independent sets of outbred individuals.
Evodevo | 2014
Ehsan Pashay Ahi; Kalina H. Kapralova; Arnar Palsson; Valerie H. Maier; Jóhannes Gudbrandsson; Sigurdur S. Snorrason; Zophonías O. Jónsson; Sigrídur Rut Franzdóttir
BackgroundUnderstanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic).ResultsFour Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs.ConclusionOur comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.
Journal of Cell Science | 2015
Tianyi Zhang; Qingxiang Zhou; Margret H. Ogmundsdottir; Katrin Möller; Robert Siddaway; Lionel Larue; Michael Hsing; Sek Won Kong; Colin R. Goding; Arnar Palsson; Eirikur Steingrimsson; Francesca Pignoni
ABSTRACT The v-ATPase is a fundamental eukaryotic enzyme that is central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation affects holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a negative regulatory loop that maintains each of these important metabolic regulators in relative balance. Interestingly, direct regulation of v-ATPase genes by human MITF also occurs in cells of the melanocytic lineage, showing mechanistic conservation in the regulation of the v-ATPase by MITF family proteins in fly and mammals. Collectively, this evidence points to an ancient module comprising Mitf, v-ATPase and TORC1 that serves as a dynamic modulator of metabolism for cellular homeostasis. Summary: In Drosophila and humans, the Mitf transcription factors directly control genes for all v-ATPase subunits, and together with the v-ATPase and TORC1, serve as a dynamic modulator of metabolism.