Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoran Jeknić is active.

Publication


Featured researches published by Zoran Jeknić.


Microbiology | 2001

Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics

Helge Holo; Zoran Jeknić; Mark A. Daeschel; Stefan Stevanovic; Ingolf F. Nes

Plantaricin W (Plw) is a new two-peptide bacteriocin, from Lactobacillus plantarum, which inhibits a large number of Gram-positive bacteria. The two peptides, Plwalpha (comprising 29 residues) and Plwbeta (comprising 32 residues), were isolated from the culture supernatants and characterized. The individual peptides had low antimicrobial activity but acted synergistically, and synergism was seen at all mixing ratios tested. The data indicate that the two peptides work in a 1:1 ratio. Chemical analyses showed that both peptides are lantibiotics, but two unmodified cysteines and one serine residue were present in Plwalpha, and Plwbeta contained one cysteine residue. The Plw structural genes were sequenced and shown to encode prepeptides with sequence similarities to two other two-peptide lantibiotics, namely staphylococcin C55 and lacticin 3147. The conserved residues are mainly serines, threonines and cysteines that can be involved in intramolecular thioether bond formation in the C-terminal parts of the molecules. This indicates that these bacteriocins are members of a new family of lantibiotics with common bridging patterns, and that the ring structures play an important functional role. Based on the data a structural model is presented in which each peptide has a central lanthionine and two overlapping thioether bridges close to their C-termini.


Journal of Experimental Botany | 2011

A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana

Marcela A. Carvallo; María Teresa Pino; Zoran Jeknić; Cheng Zou; Colleen J. Doherty; Shin Han Shiu; Tony H. H. Chen; Michael F. Thomashow

Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature.


Plant Cell and Environment | 2008

Ectopic AtCBF1 over‐expression enhances freezing tolerance and induces cold acclimation‐associated physiological modifications in potato

María Teresa Pino; Jeffrey S. Skinner; Zoran Jeknić; Patrick M. Hayes; Alfred H. Soeldner; Michael F. Thomashow; Tony H. H. Chen

We studied the effect of ectopic AtCBF over-expression on physiological alterations that occur during cold exposure in frost-sensitive Solanum tuberosum and frost-tolerant Solanum commersonii. Relative to wild-type plants, ectopic AtCBF1 over-expression induced expression of COR genes without a cold stimulus in both species, and imparted a significant freezing tolerance gain in both species: 2 degrees C in S. tuberosum and up to 4 degrees C in S. commersonii. Transgenic S. commersonii displayed improved cold acclimation potential, whereas transgenic S. tuberosum was still incapable of cold acclimation. During cold treatment, leaves of wild-type S. commersonii showed significant thickening resulting from palisade cell lengthening and intercellular space enlargement, whereas those of S. tuberosum did not. Ectopic AtCBF1 activity induced these same leaf alterations in the absence of cold in both species. In transgenic S. commersonii, AtCBF1 activity also mimicked cold treatment by increasing proline and total sugar contents in the absence of cold. Relative to wild type, transgenic S. commersonii leaves were darker green, had higher chlorophyll and lower anthocyanin levels, greater stomatal numbers, and displayed greater photosynthetic capacity, suggesting higher productivity potential. These results suggest an endogenous CBFpathway is involved in many of the structural, biochemical and physiological alterations associated with cold acclimation in these Solanum species.


Annals of Botany | 2009

The lateral root initiation index: an integrative measure of primordium formation

Joseph G. Dubrovsky; Aleš Soukup; Selene Napsucialy-Mendivil; Zoran Jeknić; Maria G. Ivanchenko

BACKGROUND AND AIMSnLateral root initiation is an essential and continuous process in the formation of root systems; therefore, its quantitative analysis is indispensable. In this study a new measure of lateral root initiation is proposed and analysed, namely the lateral root initiation index (I(LRI)), which defines how many lateral roots and/or primordia are formed along a parent-root portion corresponding to 100 cortical cells in a file.nnnMETHODSnFor data collection, a commonly used root clearing procedure was employed, and a new simple root clearing procedure is also proposed. The I(LRI) was determined as 100dl, where d is the density of lateral root initiation events (number mm(-1)) and l is the average fully elongated cortical cell length (mm).nnnKEY RESULTSnAnalyses of different Arabidopsis thaliana genotypes and of a crop plant, tomato (Solanum lycopersicum), showed that I(LRI) is a more precise parameter than others commonly used as it normalizes root growth for variations in cell length. Lateral root primordium density varied in the A. thaliana accessions Col, Ler, Ws, and C24; however, in all accessions except Ws, I(LRI) was similar under the same growth conditions. The nitrogen/carbon ratio in the growth medium did not change the lateral root primordium density but did affect I(LRI). The I(LRI) was also modified in a number of auxin-related mutants, revealing new root branching phenotypes in some of these mutants. The rate of lateral root initiation increased with Arabidopsis seedling age; however, I(LRI) was not changed in plants between 8 and 14 d post-germination.nnnCONCLUSIONSnThe I(LRI) allows for a more precise comparison of lateral root initiation under different growth conditions, treatments, genotypes and plant species than other comparable methods.


Plant and Cell Physiology | 2012

Cloning and Functional Characterization of a Gene for Capsanthin-Capsorubin Synthase from Tiger Lily (Lilium lancifolium Thunb. 'Splendens')

Zoran Jeknić; Jeffrey T. Morré; Stevan Jeknić; Slađana Jevremović; Angelina Subotić; Tony H. H. Chen

The orange color of tiger lily (Lolium lancifolium Splendens) flowers is due, primarily, to the accumulation of two κ-xanthophylls, capsanthin and capsorubin. An enzyme, known as capsanthin-capsorubin synthase (CCS), catalyzes the conversion of antheraxanthin and violaxanthin into capsanthin and capsorubin, respectively. We cloned the gene for capsanthin-capsorubin synthase (Llccs) from flower tepals of L. lancifolium by the rapid amplification of cDNA ends (RACE) with a heterologous non-degenerate primer that was based on the sequence of a gene for lycopene β-cyclase (lcyB). The full-length cDNA of Llccs was 1,785 bp long and contained an open reading frame of 1,425 bp that encoded a polypeptide of 474 amino acids with a predicted N-terminal plastid-targeting sequence. Analysis by reverse transcription-PCR (RT-PCR) revealed that expression of Llccs was spatially and temporally regulated, with expression in flower buds and flowers of L. lancifolium but not in vegetative tissues. Stable overexpression of the Llccs gene in callus tissue of Iris germanica, which accumulates several xanthophylls including violaxanthin, the precursor of capsorubin, resulted in transgenic callus whose color had changed from its normal yellow to red-orange. This novel red-orange coloration was due to the accumulation of two non-native κ-xanthophylls, capsanthin and capsorubin, as confirmed by HPLC and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with authentic standards. Cloning of the Llccs gene should advance our understanding of the molecular and genetic mechanisms of the biosynthesis of κ-carotenoids in general and in the genus Lilium in particular, and will facilitate transgenic alterations of the colors of flowers and fruits of many plant species.


Plant Molecular Biology | 2014

Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation.

Zoran Jeknić; Katherine A. Pillman; Taniya Dhillon; Jeffrey S. Skinner; Ottó Veisz; Alfonso Cuesta-Marcos; Patrick M. Hayes; Andrew K. Jacobs; Tony H. H. Chen; Eric J. Stockinger

C-Repeat Binding Factors (CBFs) are DNA-binding transcriptional activators of gene pathways imparting freezing tolerance. Poaceae contain three CBF subfamilies, two of which, HvCBF3/CBFIII and HvCBF4/CBFIV, are unique to this taxon. To gain mechanistic insight into HvCBF4/CBFIV CBFs we overexpressed Hv-CBF2A in spring barley (Hordeum vulgare) cultivar ‘Golden Promise’. The Hv-CBF2A overexpressing lines exhibited stunted growth, poor yield, and greater freezing tolerance compared to non-transformed ‘Golden Promise’. Differences in freezing tolerance were apparent only upon cold acclimation. During cold acclimation freezing tolerance of the Hv-CBF2A overexpressing lines increased more rapidly than that of ‘Golden Promise’ and paralleled the freezing tolerance of the winter hardy barley ‘Dicktoo’. Transcript levels of candidate CBF target genes, COR14B and DHN5 were increased in the overexpressor lines at warm temperatures, and at cold temperatures they accumulated to much higher levels in the Hv-CBF2A overexpressors than in ‘Golden Promise’. Hv-CBF2A overexpression also increased transcript levels of other CBF genes at FROST RESISTANCE-H2-H2 (FR-H2) possessing CRT/DRE sites in their upstream regions, the most notable of which was CBF12. CBF12 transcript levels exhibited a relatively constant incremental increase above levels in ‘Golden Promise’ both at warm and cold. These data indicate that Hv-CBF2A activates target genes at warm temperatures and that transcript accumulation for some of these targets is greatly enhanced by cold temperatures.


Ciencia E Investigacion Agraria | 2013

Enhanced in vitro drought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene

María Teresa Pino; Andrea Ávila; Andrea Molina; Zoran Jeknić; Tony H. H. Chen

M.T. Pino, A. Avila, A. Molina, Z. Jeknic, and T.H.H. Chen. 2013. Enhanced in vitro drought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene. Cien. Inv. Agr. 40(1):171-184. Cultivated potato crops are sensitive to drought stress, reducing yield and tuber quality when the soil water potential drops to -0.3 MPa. However, drought not only affects plant growth and physiological activity, but this stress also induces biochemical and molecular changes in the cellular gene expression profile, triggering genes that play a direct role in plant protection and gene regulation. The genes involved in regulation include C-repeat Binding Factors/Dehydration responsive element binding (CBF/DREB) transcription factors, which increase cold, drought and salt tolerance in different plant species. The aim of this research was to evaluate whether the overexpression of the ScCBF1 gene from Solanum commersonii enhances drought stress tolerance in transgenic Solanum tuberosum and S. commersonii plantlets grown in vitro and induces drought adaptation mechanisms, such as osmoprotectors and genes for osmotic adjustment and membrane stability. Drought conditions were simulated through the addition of polyethylene glycol (PEG4000) to hormone-free MS medium. The vegetative growth, root development, proline content, and ScCBF1, Δ1-pyrroline-5-carboxylate synthetase (P5CS) and Dehydrins like genes (DNH10) expression were evaluated. The constitutive in vitro overexpression of ScCBF1 in both potato species showed better overall plantlet growth and root development under drought stress and higher proline levels in the stems and leaves. A significant increase in DNH10 expression was also associated with drought stress. In summary, the expression of ScCBF1 in potatoes induces responses associated with drought adaptation mechanisms, resulting in better overall plant growth.


Archive | 2002

Enhancing Cold tolerance in Plants by Genetic Engineering of Glycinebetaine Synthesis

Raweewan Yuwansiri; Eung-Jun Park; Zoran Jeknić; Tony H. H. Chen

Low-temperature stress, including freezing and chilling, is one of the primary factors that limits crop production around the world. A severe winter or unseasonable cold spell in a major agricultural area can reduce yield, delay harvest, lower the quality of the products, and/or cause crop failure. Low-temperature stress is not limited to particular geographic regions; producers throughout the world have suffered significant economic losses during the past decade. These losses can significantly influence the economic well-being of rural communities, and affect product availability and consumer prices. Stress can also have a great impact on the stability of world food supplies, and may subsequently influence commodity prices and the international trade balance.


Plant Cell Reports | 2014

Alteration of flower color in Iris germanica L. ‘Fire Bride’ through ectopic expression of phytoene synthase gene ( crtB ) from Pantoea agglomerans

Zoran Jeknić; Stevan Jeknić; Slađana Jevremović; Angelina Subotić; Tony H. H. Chen

Key messageGenetic modulation of the carotenogenesis inI. germanica‘Fire Bride’ by ectopic expression of acrtBgene causes several flower parts to develop novel orange and pink colors.AbstractFlower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, ‘Fire Bride’, with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin–capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica ‘Fire Bride’ and produce new flower traits.


Methods of Molecular Biology | 2012

Micropropagation of Iris sp.

Slađana Jevremović; Zoran Jeknić; Angelina Subotić

Irises are perennial plants widely used as ornamental garden plants or cut flowers. Some species accumulate secondary metabolites, making them highly valuable to the pharmaceutical and perfume industries. Micropropagation of irises has successfully been accomplished by culturing zygotic embryos, different flower parts, and leaf base tissues as starting explants. Plantlets are regenerated via somatic embryogenesis, organogenesis, or both processes at the same time depending on media composition and plant species. A large number of uniform plants are produced by somatic embryogenesis, however, some species have decreased morphogenetic potential overtime. Shoot cultures obtained by organogenesis can be multiplied for many years. Somatic embryogenic tissue can be reestablished from leaf bases of in vitro-grown shoots. The highest number of plants can be obtained by cell suspension cultures. This chapter describes effective in vitro plant regeneration protocols for Iris species from different types of explants by somatic embryogenesis and/or organogenesis suitable for the mass propagation of ornamental and pharmaceutical irises.

Collaboration


Dive into the Zoran Jeknić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge